cChronic wound infections are associated with biofilm formation, which in turn has been correlated with drug resistance. However, the mechanism by which bacteria form biofilms in clinical environments is not clearly understood. This study was designed to investigate the biofilm formation potency of Acinetobacter baumannii and the potential association of biofilm formation with genes encoding efflux pumps, quorum-sensing regulators, and outer membrane proteins. A total of 48 clinically isolated A. baumannii strains, identified by enterobacterial repetitive intergenic consensus (ERIC)-PCR as types A-II, A-III, and A-IV, were analyzed. Three representative strains, which were designated A. baumannii ABR2, ABR11, and ABS17, were used to evaluate antimicrobial susceptibility, biofilm inducibility, and gene transcription (abaI, adeB, adeG, adeJ, carO, and ompA). A significant increase in the MICs of different classes of antibiotics was observed in the biofilm cells. The formation of a biofilm was significantly induced in all the representative strains exposed to levofloxacin. The levels of gene transcription varied between bacterial genotypes, antibiotics, and antibiotic concentrations. The upregulation of adeG correlated with biofilm induction. The consistent upregulation of adeG and abaI was detected in A-III-type A. baumannii in response to levofloxacin and meropenem (1/8 to 1/2؋ the MIC), conditions which resulted in the greatest extent of biofilm induction. This study demonstrates a potential role of the AdeFGH efflux pump in the synthesis and transport of autoinducer molecules during biofilm formation, suggesting a link between low-dose antimicrobial therapy and a high risk of biofilm infections caused by A. baumannii. This study provides useful information for the development of antibiofilm strategies.
Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, play an important role in cellular communication during skeletal growth and homeostasis. Bioactive molecules carried by EVs are transported to neighboring and distant cells to trigger a series of signaling cascades influencing bone homeostasis. The bioactive activities of osteoclast-derived EVs include regulation of osteoclastogenesis and osteoclast–osteoblast communication. As osteoclast-derived EVs have the potential to regulate osteoclasts and osteoblasts, their application in osteoporosis and other bone metabolic disorders is currently under investigation. However, very few reviews of osteoclast-derived EVs in bone remodeling regulation have yet been published. This article aims to review recent advances in this field, summarizing a new regulator of osteoclastogenesis and osteoclast–osteoblast communication mediated by osteoclast-derived EVs. We will analyze the major challenges in the field and potential for the therapeutic application of EVs.
Osteoporosis is a metabolic bone disease characterized by a decrease in bone mass and degradation of the bone microstructure, which increases bone fragility and fracture risk. However, the molecular mechanisms of osteoporosis remain unclear. Long non-coding RNAs (lncRNAs) have become important epigenetic regulators controlling the expression of genes and affecting multiple biological processes. Accumulating evidence of the involvement of lncRNAs in bone remolding has increased understanding of the molecular mechanisms underlying osteoporosis. This review aims to summarize recent progress in the elucidation of the role of lncRNAs in bone remodeling, and how it contributes to osteoblast and osteoclast function. This knowledge will facilitate the understanding of lncRNA roles in bone biology and shed new light on the modulation and potential treatment of osteoporosis.
The present study aimed to analyze the differentially expressed genes related to the tripartite motif containing 58 (TRIM58)/cg26157385 methylation sites, and consequently to provide theoretical basis for elucidating the influence of TRIM58/cg26157385 methylation on lung cancer prognosis. Methylation-sequencing information, mRNA expression profiling data and clinical data were downloaded from cBioPortal database to screen out candidate genes related to the methylation of TRIM58/cg26157385 in squamous cell lung carcinoma. The differentially expressed genes related to TRIM58 methylation were extracted form both training dataset and validation dataset. Cox regression analysis, risk scoring system construction, correlation analysis between the expression value of genes and clinical information were conducted to reveal TRIM58 methylation-related factors. Additionally, GO function analysis and KEGG pathway enrichment analysis were performed. Based on their expression level and the corresponding survival information for 347 out of 370 samples with squamous cell lung carcinoma, 183 genes significantly associated with prognosis were gained, and the top 8 ones, including alpha-2-macroglobulin-like 1 (A2ML1), cyclin-E1 (CCNE1), COBL, establishment of sister chromatid cohesion N-acetyltransferase 2 (ESCO2), G protein-coupled receptor 115 (GPR115), matrix metalloproteinases 10 (MMP10), OVO homologue-like 1 (OVOL1) and secretoglobin family 1A member 1 (SCGB1A1), were candidate signature genes significantly correlated with TRIM58 methylation. Furthermore, targeted therapy was significantly correlated with prognosis. Functional enrichment analysis demonstrated that the proliferation and differentiation of epidermal cells in lung squamous cell carcinoma patients were abnormal and the homeostasis was disturbed. Eight genes, including A2ML1, CCNE1, COBL, ESCO2, GPR115, MMP10, OVOL1 and SCGB1A1, were significantly related to TRIM58 methylation and treatment of lung squamous cell carcinoma, and may be used as potential prognostic biomarkers. The present study would help to elucidate the influence of TRIM58/cg26157385 methylation on lung cancer prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.