Owing to the important physiological sits of biothiols (Cys, Hcy, and GSH), developing accurate detection methods capable of qualitative and quantitative analysis of biothiols in living systems is needed for understanding the biological profile of biothiols. In this work, we have designed and synthesized a 4′-hydroxy-[1,1′-biphenyl]-4-carbonitrile modified with NBD group-based fluorescent probe, BPN-NBD, for sensitive detection of Cys/Hcy and GSH by dual emission signals via a single-wavelength excitation. BPN-NBD exhibited an obvious blue fluorescence (λmaxem = 475 nm) upon the treatment with GSH and reacted with Cys/Hcy to give a mixed blue-green fluorescence (λmaxem = 475 and 545 nm). Meanwhile, BPN-NDB performed sufficient selectivity, rapid detection (150 s), high sensitivity (0.011 µM for Cys, 0.015 µM for Hcy, and 0.003 µM for GSH) and could work via a single-wavelength excitation to analytes and had the ability to image Cys/Hcy from GSH in living MCF-7 cells, tumor tissues, and zebrafish by exhibiting different fluorescence signals. Overall, this work provided a powerful tool for thiols visualization in biological and medical applications.
The well-known small-molecule biothiols have been used to maintain the normal metabolism of peroxy radicals, forming protein structures, resisting cell apoptosis, regulating metabolism, and protecting the homeostasis of cells in the organism. A large amount of research has found that abnormal levels of the above biothiols can cause some adverse diseases, such as changes in hair pigmentation, a slower growth rate, delayed response, excessive sleep and skin diseases. In order to further investigate the exact intracellular molecular mechanism of biothiols, it is imperative to explore effective strategies for real-time biothiol detection in living systems. In this work, a new near-infrared (NIR) emission fluorescence probe (probe 1) for sensitive and selective detection of biothiols was devised by combining dicyanoisophorone derivatives with the dinitrobenzenesulfonyl (DNBS) group. As expected, probe 1 could specifically detect biothiols (Cys, Hcy and GSH) through the dinitrobenzenesulfonyl group to form dye 2, which works as a signaling molecule for sensing biothiols in real samples. Surprisingly, probe 1 showed superior sensing characteristics and low-limit detection towards biothiols (36.0 nM for Cys, 39.0 nM for Hcy and 48.0 nM for GSH) with a large Stokes shift (134 nm). Additionally, the function of probe 1 as a platform for detecting biothiols was confirmed by confocal fluorescence imaging of biothiols in MCF-7 cells and zebrafish. More importantly, the capability of probe 1 in vivo has been further evaluated by imaging the overexpressed biothiols in tumor tissue. It is reasonable to believe that probe 1 can provide a valuable method to explore the relationship between biothiols and the genesis of tumor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.