Advanced materials for electrocatalytic water splitting are central to renewable energy research. In this work, three-dimensional (3D) hierarchical frameworks based on the self-assembly of MoS2 nanosheets on graphene oxide were produced via a simple one-step hydrothermal process. The structures of the resulting 3D frameworks were characterized by using a variety of microscopic and spectroscopic tools, including scanning and transmission electron microscopies, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman scattering. Importantly, the three-dimensional MoS2/graphene frameworks might be used directly as working electrodes which exhibited apparent and stable electrocatalytic activity in hydrogen evolution reaction (HER), as manifested by a large cathodic current density with a small overpotential of -107 mV (-121 mV when loaded on a glassy-carbon electrode) and a Tafel slope of 86.3 mV/dec (46.3 mV/dec when loaded on a glassy-carbon electrode). The remarkable performance might be ascribed to the good mechanical strength and high electrical conductivity of the 3D frameworks for fast charge transport and collection, where graphene oxide provided abundant nucleation sites for MoS2 deposition and oxygen incorporation led to the formation of defect-rich MoS2 nanosheets with active sites for HER.
Advanced materials for electrocatalytic water splitting are central to renewable energy research. In this work, MoS2 nanosheets supported on porous metallic MoO2 (MoS2/MoO2) were produced by sulfuration treatments of porous and highly conductive MoO2 for the hydrogen evolution reaction. Porous MoO2 with one-dimensional channel-like structures was prepared by calcination at elevated temperatures using phosphomolybdic acid as the precursor and mesoporous silica (SBA-15) as the template, and the subsequent hydrothermal treatment in the presence of thioacetamide led to the transformation of the top layers to MoS2 forming MoS2/MoO2 composites. Electrochemical studies showed that the obtained composites exhibited excellent electrocatalytic activity for HER with an onset potential of -104 mV (vs. RHE), a large current density (10 mA cm(-2) at -0.24 V), a small Tafel slope of 76.1 mV dec(-1) and robust electrochemical durability. The performance might be ascribed to the high electrical conductivity and porous structures of MoO2 with one-dimensional channels of 3 to 4 nm in diameter that allowed for fast charge transport and collection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.