The objectives of this study were to (i) measure genetic gain using a set of maize (Zea mays L.) single‐cross hybrids that were widely used in Chinese maize production from 1964 to 2001, (ii) determine if there were changes in morphological characteristics, and (iii) examine the germplasm backgrounds of these hybrids. Yield trials were conducted for 3 yr, using a split‐plot design. Each hybrid was planted at three different densities in four locations, two locations each representing summer and spring corn areas. Mean rates of genetic gain were 52 kg ha−1 yr−1 when measured at the spring locations, 69 kg ha−1 yr−1 when measured at the summer locations, and 60 kg ha−1 yr−1 when measured across all locations. There was no significant effect of planting density on genetic gain. Genetic gain has been largely contributed by increased yield per plant and this strategy was reflected in changes in ear and plant morphology. Analyses of pedigree backgrounds showed continuing dependence on U.S. germplasm backgrounds, notably C103, Oh43, Mo17, and Iowa Stiff Stalk Synthetic (BSSS).
The tumor-suppressor p53 provides a critical brake on tumor development. HDM2 (human double-minute 2), a p53 E3 ubiquitin ligase, is the principal cellular antagonist of p53. Mounting evidence has suggested that ribosomal proteins (RPs) modulate HDM2-p53 as a novel pathway for regulating p53 signaling. However, the upstream regulators that mediate RP-HDM2-p53 circuits remain poorly understood. Here we identify human coilin-interacting nuclear ATPase protein (hCINAP) as an interacting partner of ribosomal protein S14 (RPS14). RPS14 stabilized and activated p53 by inhibiting HDM2-mediated p53 polyubiquitination and degradation. More importantly, RPS14 was specifically modified with NEDD8 and hCINAP inhibited RPS14 NEDDylation by recruiting NEDD8-specific protease 1. The decrease in RPS14 NEDDylation led to reduced stability and incorrect localization of RPS14, thereby attenuating the interaction between RPS14 and HDM2. Free HDM2 stimulated p53 polyubiquitination and degradation. In conclusion, we demonstrate that hCINAP acts as a novel regulator of RPS14-HDM2-p53 by regulating the interaction between RPS14 and HDM2 through the control of RPS14 NEDDylation. These findings suggest that hCINAP is an important regulator of RP-HDM2-p53 pathway and a potential anticancer drug target.
Genetic diversity within North American ginseng (Panax quinquefolius L.) grown in Ontario was investigated at the DNA level using the randomly amplified polymorphic DNA (RAPD) method via the polymerase chain reaction (PCR). A total of 420 random decamers were initially screened against DNA from four ginseng plants and 78.8% of them generated RAPD fragments. Thirty-six of the decamers that generated highly repeatable polymorphic RAPD markers were selected for further RAPD analysis of the ginseng population. With these primers, 352 discernible DNA fragments were produced from DNA of 48 ginseng plants, corresponding to an average of 9.8 fragments per primer, of which over 45% were polymorphic. The similarity coefficients among the DNA of ginseng plants analyzed were low, ranging from 0.149 to 0.605 with a mean of 0.412, indicating that a high degree of genetic diversity exists in the ginseng population. Lower levels of genetic diversity were detected among 3-year-old ginseng plants selected on the basis of greater plant height than among the plants randomly selected from the same subpopulation or over the whole population, suggesting that genetic factors at least partly contribute to morphological variation within the ginseng population and that visual selection can be effective in identifying the genetic differences. The significance of a high degree of genetic variation in the ginseng population on its potential for improvement by breeding is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.