Porcine reproductive and respiratory syndrome (PRRS) is a severe viral disease in pigs, causing great economic losses worldwide each year. The causative agent of the disease, PRRS virus (PRRSV), is a member of the family Arteriviridae. Here we report our investigation of the unparalleled large-scale outbreaks of an originally unknown, but so-called “high fever” disease in China in 2006 with the essence of PRRS, which spread to more than 10 provinces (autonomous cities or regions) and affected over 2,000,000 pigs with about 400,000 fatal cases. Different from the typical PRRS, numerous adult sows were also infected by the “high fever” disease. This atypical PRRS pandemic was initially identified as a hog cholera-like disease manifesting neurological symptoms (e.g., shivering), high fever (40–42°C), erythematous blanching rash, etc. Autopsies combined with immunological analyses clearly showed that multiple organs were infected by highly pathogenic PRRSVs with severe pathological changes observed. Whole-genome analysis of the isolated viruses revealed that these PRRSV isolates are grouped into Type II and are highly homologous to HB-1, a Chinese strain of PRRSV (96.5% nucleotide identity). More importantly, we observed a unique molecular hallmark in these viral isolates, namely a discontinuous deletion of 30 amino acids in nonstructural protein 2 (NSP2). Taken together, this is the first comprehensive report documenting the 2006 epidemic of atypical PRRS outbreak in China and identifying the 30 amino-acid deletion in NSP2, a novel determining factor for virulence which may be implicated in the high pathogenicity of PRRSV, and will stimulate further study by using the infectious cDNA clone technique.
In 2012, an unprecedented large-scale outbreak of disease in pigs in China caused great economic losses to the swine industry. Isolates from pseudorabies virus epidemics in swine herds were characterized. Evidence confirmed that the pathogenic pseudorabies virus was the etiologic agent of this epidemic.
Phage display technology has been widely used for antibody affinity maturation for decades. The limited library sequence diversity together with excessive redundancy and labour-consuming procedure for candidate identification are two major obstacles to widespread adoption of this technology. We hereby describe a novel library generation and screening approach to address the problems. The approach started with the targeted diversification of multiple complementarity determining regions (CDRs) of a humanized anti-ErbB2 antibody, HuA21, with a small perturbation mutagenesis strategy. A combination of three degenerate codons, NWG, NWC, and NSG, were chosen for amino acid saturation mutagenesis without introducing cysteine and stop residues. In total, 7,749 degenerate oligonucleotides were synthesized on two microchips and released to construct five single-chain antibody fragment (scFv) gene libraries with 4 x 106 DNA sequences. Deep sequencing of the unselected and selected phage libraries using the Illumina platform allowed for an in-depth evaluation of the enrichment landscapes in CDR sequences and amino acid substitutions. Potent candidates were identified according to their high frequencies using NGS analysis, by-passing the need for the primary screening of target-binding clones. Furthermore, a subsequent library by recombination of the 10 most abundant variants from four CDRs was constructed and screened, and a mutant with 158-fold increased affinity (Kd = 25.5 pM) was obtained. These results suggest the potential application of the developed methodology for optimizing the binding properties of other antibodies and biomolecules.
BackgroundEarly and accurate diagnosis of dengue infection is essential for control of disease outbreaks. Recently, the dengue virus non-structural antigen 1 (NS1), a conserved and secreted glycoprotein, has been used as a marker for early diagnosis of dengue with convenience and cost-effectiveness. Serological tests of dengue IgM and IgG antibodies are still the most widely used for diagnosis of dengue. In order to assess combined diagnostic value of these tests, we study the kinetic profiles of circulating NS1, dengue IgM and IgG antibodies over the course of the disease by using an in-house dengue type 1 (DENV1) specific NS1 capture ELISA and the commercial Panbio Dengue IgM and IgG capture ELISAs.ResultsA panel of 313 acute-and early convalescent-phase serum specimens from 140 DENV1 primary infected patients during an outbreak of dengue in Guangzhou, China, in 2006 were studied. Dengue NS1 presented high levels in acute-phase serum samples. It was detectable as early as day 1 of illness, and up to 14 day after onset. The sensitivity of NS1 detection was ranged from 81.8% to 91.1% with samples taken during the first 7 days. Anti-dengue IgM antibody was detectable on the third day of onset with the positive rate of 42.9%, and rapidly increasing to 100% by day 8 of illness. Anti-dengue IgG antibody was detectable on the fifth day of onset with low level at the first week of onset, and slowly increasing to 100% by day 15 of illness. Combining the results of NS1 and IgM antibody detection allowed positive diagnosis in 96.9% -100% for samples taken after day 3 of onset.ConclusionsDengue NS1 detection might shorten the window period by first few days of illness. A combination of dengue NS1 antigen and IgM antibody testing facilitates enhanced diagnosis rates. The procedures should be suitable for developing countries where dengue is endemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.