Accumulating evidence suggests that long noncoding RNA (lncRNA) plays important regulatory roles in cancer biology. However, the involvement of lncRNA in colorectal carcinoma progression remains largely unknown, especially in colorectal carcinoma metastasis. In this study, we investigated the changes in lncRNA expression in colorectal carcinoma and identified a new lncRNA, the antisense transcript of SATB2 (SATB2-AS1), as a key regulator of colorectal carcinoma progression. SATB2-AS1 was frequently downregulated in colorectal carcinoma cells and tissues, and patients whose tumors expressed SATB2-AS1 at low levels had a shorter overall survival and poorer prognosis. Downregulation of SATB2-AS1 significantly promoted cell proliferation, migration, and invasion in vitro and in vivo, demonstrating that it acts as a tumor suppressor in colorectal carcinoma. SATB2-AS1 suppressed colorectal carcinoma progression by serving as a scaffold to recruit p300, whose acetylation of H3K27 and H3K9 at the SATB2 promoter upregulated expression of SATB2, a suppressor of colorectal carcinoma growth and metastasis. SATB2 subsequently recruited HDAC1 to the Snail promoter, repressing Snail transcription and inhibiting epithelial-to-mesenchymal transition. Taken together, these data reveal SATB2-AS1 as a novel regulator of the SATB2-Snail axis whose loss facilitates progression of colorectal carcinoma. Significance: These data show that the lncRNA SATB2-AS1 mediates epigenetic regulation of SATB2 and Snail expression to suppress colorectal cancer progression. See related commentary by Li, p. 3536
Early and late ripening sweet cherries were characterized for phenolic acids, and also their antioxidant capacity and potential antifungal effects were investigated. Free, conjugated, and bound phenolics were identified and quantified using ultra performance liquid chromatography-tandem mass spectrometry. Our results indicated that the early ripening cultivars contained higher free phenolic acids, which was positively related to remarkable antioxidant properties and the inhibition effects on Alternaria alternata and tenuazonic acid (TeA) accumulation. However, conjugated phenolics of the late ripening cultivars, mainly including caffeic, 2,3,4-trihydroxybenzoic, p-coumaric, and pyrocatechuic acids, achieved the highest antifungal effects and almost completely inhibited the A. alternata and TeA production. 2,2-Diphenyl-1-picrylhydrazyl testing and ferric ion reducing antioxidant power assay showed strong positive correlation with total phenolics and specific phenolics such as free epicatechin and conjugated 2,3,4-trihydroxybenzoic acids and also with antifungal activity. Results from this study provide further insights into the health-promoting phenolic compounds in sweet cherries.
BackgroundIncreasing evidence has revealed that microRNAs (miRNA) played a pivotal role in regulating cancer cell proliferation and metastasis. The deregulation of miR-182 has been identified in colorectal cancer (CRC). However, the role and mechanism of miR-182 in CRC have not been completely understood yet.MethodsThe expression levels of miR-182 in CRC tissues and CRC cell lines were examined by performing stem-loop quantitative RT-PCR. The stable over-expression miR-182 cell lines and control cell lines were constructed by lentivirus infection. Subsequently, CCK-8 assay, plate colony formation assay, cell migration, invasion assay and experimental animal models were performed to detect the biological functions of miR-182 in vitro and in vivo. A luciferase reporter assay was conducted to confirm target associations. Western blot and immunohistochemical analysis were performed to examine the expression changes of molecular markers that are regulated by miR-182.ResultsWe found that miR-182 expression is increased in CRC cells that originated from metastatic foci and human primary CRC tissues with lymph node metastases. The ectopic expression of miR-182 enhanced cell proliferation, invasion, and migration in vitro. Stable overexpression of miR-182 also facilitated tumor growth and metastasis in vivo too. Further research showed that miR-182 could directly target the 3’untranslated region (3’UTR) of SATB2 mRNA and subsequently repress both the mRNA and protein expressions of SATB2, which we identified in previous studies as a CRC metastasis-associated protein. Restoring SATB2 expression could reverse the effects of miR-182 on CRC cell proliferation and migration. Investigations of possible mechanisms underlying these behaviors induced by miR-182 revealed that miR-182 induced epithelial-mesenchymal transition (EMT) by modulating the expression of key cellular molecules in EMT.ConclusionsOur results illustrated that the up-regulation of miR-182 played a pivotal role in CRC tumorigenesis and metastasis, which suggesting a potential implication of miR-182 in the molecular therapy for CRC.
Betaine is a natural compound present in commonly consumed foods and may have a potential role in the regulation of glucose and lipids metabolism. However, the underlying molecular mechanism of its action remains largely unknown. Here, we show that supplementation with betaine contributes to improved high-fat diet (HFD)-induced gut microbiota dysbiosis and increases antiobesity strains such as Akkermansia muciniphila, Lactobacillus, and Bifidobacterium. In mice lacking gut microbiota, the functional role of betaine in preventing HFD-induced obesity, metabolic syndrome, and inactivation of brown adipose tissues are significantly reduced. Akkermansia muciniphila is an important regulator of betaine in improving microbiome ecology and increasing strains that produce short-chain fatty acids (SCFAs). Increasing two main members of SCFAs including acetate and butyrate can significantly regulate the levels of DNA methylation at host miR-378a promoter, thus preventing the development of obesity and glucose intolerance. However, these beneficial effects are partially abolished by Yin yang (YY1), a common target gene of the miR-378a family. Taken together, our findings demonstrate that betaine can improve obesity and associated MS via the gut microbiota-derived miR-378a/YY1 regulatory axis, and reveal a novel mechanism by which gut microbiota improve host health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.