BackgroundPrediction or early diagnosis of diabetes is crucial for populations with high risk of diabetes.MethodsIn this study, we assessed the ability of five popular classifiers (J48, AdaboostM1, SMO, Bayes Net, and Naïve Bayes) to identify individuals with diabetes based on nine non-invasive and easily obtained clinical features, including age, gender, body mass index (BMI), hypertension, history of cardiovascular disease or stroke, family history of diabetes, physical activity, work stress, and salty food preference. A total of 4205 data entries were obtained from annual physical examination reports for adults in the Shengjing Hospital of China Medical University during January–April 2017. Weka data mining software was used to identify the best algorithm for diabetes classification.ResultsThe results indicate that decision tree classifier J48 has the best performance (accuracy = 0.9503, precision = 0.950, recall = 0.950, F-measure = 0.948, and AUC = 0.964). The decision tree structure shows that age is the most significant feature, followed by family history of diabetes, work stress, BMI, salty food preference, physical activity, hypertension, gender, and history of cardiovascular disease or stroke.ConclusionsOur study shows that decision tree analyses can be applied to screen individuals for early diabetes risk without the need for invasive tests. This procedure will be particularly useful in developing regions with high epidemiological risk and poor socioeconomic status, and enable clinical practitioners to rapidly screen patients for increased risk of diabetes. The key features in the tree structure could further facilitate diabetes prevention through targeted community interventions, which can potentially improve early diabetes diagnosis and reduce burdens on the healthcare system.
Objective Metabolic syndrome (MetS) involves multiple metabolic disorders and seriously affects human health. Identification of key biological factors associated with MetS incidence is therefore important. We explored the association between MetS and the biochemical profiles of Chinese adults in Shenyang City in a nested case-control study. Methods We included adult participants who underwent physical examination at our hospital for 2 consecutive years. Participants’ biochemical profiles and other MetS components were tested and monitored continuously. Propensity score matching was used to adjust confounding factors between participants with and without MetS. We analyzed the association between incidence of MetS and the biochemical profiles of participants. Results Of 5702 participants who underwent physical examination between 1 January 2017 and 1 December 2018, 538 had confirmed newly developed MetS. After successfully matching 436 pairs of participants, mean cystatin C (Cys-C) level was significantly higher in the MetS group than in the non-MetS group. Logistic regression analysis indicated that age (years) and γ-glutamate transpeptidase, creatinine, uric acid, and Cys-C levels were significantly associated with MetS incidence; among these, the odds ratio of Cys-C was highest (3.03; 95% confidence interval, 1.02–9.00). Conclusions Cys-C levels were significantly associated with the incidence of MetS among Chinese adults.
Background Diabetes mellitus is a chronic disease with a steadfast increase in prevalence. Due to the chronic course of the disease combining with devastating complications, this disorder could easily carry a financial burden. The early diagnosis of diabetes remains as one of the major challenges medical providers are facing, and the satisfactory screening tools or methods are still required, especially a population- or community-based tool. Methods This is a retrospective cross-sectional study involving 15,323 subjects who underwent the annual check-up in the Department of Family Medicine of Shengjing Hospital of China Medical University from January 2017 to June 2017. With a strict data filtration, 10,436 records from the eligible participants were utilized to develop a prediction model using the J48 decision tree algorithm. Nine variables, including age, gender, body mass index (BMI), hypertension, history of cardiovascular disease or stroke, family history of diabetes, physical activity, work-related stress, and salty food preference, were considered. Results The accuracy, precision, recall, and area under the receiver operating characteristic curve (AUC) value for identifying potential diabetes were 94.2%, 94.0%, 94.2%, and 94.8%, respectively. The structure of the decision tree shows that age is the most significant feature. The decision tree demonstrated that among those participants with age ≤ 49, 5497 participants (97%) of the individuals were identified as nondiabetic, while age > 49, 771 participants (50%) of the individuals were identified as nondiabetic. In the subgroup where people were 34 < age ≤ 49 and BMI ≥ 25, when with positive family history of diabetes, 89 (92%) out of 97 individuals were identified as diabetic and, when without family history of diabetes, 576 (58%) of the individuals were identified as nondiabetic. Work-related stress was identified as being associated with diabetes. In individuals with 34 < age ≤ 49 and BMI ≥ 25 and without family history of diabetes, 22 (51%) of the individuals with high work-related stress were identified as nondiabetic while 349 (88%) of the individuals with low or moderate work-related stress were identified as not having diabetes. Conclusions We proposed a classifier based on a decision tree which used nine features of patients which are easily obtained and noninvasive as predictor variables to identify potential incidents of diabetes. The classifier indicates that a decision tree analysis can be successfully applied to screen diabetes, which will support clinical practitioners for rapid diabetes identification. The model provides a means to target the prevention of diabetes which could reduce the burden on the health system through effective case management.
ObjectiveTo explore the association of the trajectory of serum Cystatin C (Cysc) with diabetic kidney disease (DKD), a retrospective cohort study of Chinese subjects was carried out.MethodA review of 2,928 diabetes mellitus (DM) patients admitted to the clinic and ward of the Endocrinology Department, Shengjing Hospital of China Medical University from January 1, 2014 to December 31, 2014 was performed. Subsequent visits to the hospital were followed until December 31, 2020. The primary endpoint was the incidence of DKD as diagnosed by urinary albumin/creatinine ratio ≥30 mg/g and/or estimated glomerular filtration rate <60 ml/min per 1.73 m2. Healthy control subjects were identified from a health checkup database in Shengjing Hospital from 2016 to 2019. The latent class growth mixed modeling (LCGMM) method was used to analyze latent classes of serum Cysc in healthy and DM subjects. Finally, the hazard ratios (HRs) of latent classes of Cysc in DM subjects were analyzed by Cox regression analysis.ResultsA total of 805 type 2 diabetes mellitus (T2DM) and 349 healthy subjects were included in the trial. The HRs of quartiles of baseline Cysc in T2DM subjects were 7.15 [95% confidence interval (CI), 2.79 to 25.57], 2.30 (95% CI, 1.25 to 4.24), and 2.05 (95% CI, 1.14 to 3.70), respectively, for quartile 4 (Q4), Q3, and Q2 when compared with Q1. Through LCGMM, a 1-class linear model was selected for the Cysc latent class in healthy subjects. In contrast, a 3-class linear model was selected for that in DM subjects. The slopes of the three latent classes in T2DM subjects were larger than the slope in healthy subjects. The HRs of incident DKD were 3.43 (95% CI, 1.93 to 6.11) for the high-increasing class and 1.80 (95% CI, 1.17 to 2.77) for the middle-increasing class after adjusting for confounding variables.ConclusionsPatients with T2DM had a higher velocity of increase in Cysc than healthy subjects. Patients with high baseline Cysc values and high latent increasing velocity of Cysc had a higher risk of developing DKD in later life. More attention should be paid to patients with these high-risk factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.