As the flatness control system is a multi-variable control system, the key issue for high-precision flatness is the determination of the optimal adjustments of flatness actuators. In order to determine these the first step is the establishment of a multi-variable control model in the flatness control process, by which the actual flatness control problem has been reduced to a non-linear optimisation problem with box-constraints. Around this optimisation problem, characteristics and applicability of current optimisation algorithms were analysed. Based on the coordinate descent method, a new multi-variable optimisation algorithm with global convergence was proposed. In the algorithm, the problem was transformed into a series of univariate optimisations which could be solved by sequentially searching along coordinate directions. In order to make the objective function decrease rapidly, and ensure that each iteration are carried out within the feasible region, the accelerating step method is adopted to determine the iterative step size. A series of feasible points have been obtained through a series of iterations, which make the objective function decrease gradually until the optimal solution has been obtained. Finally, the algorithm has been tested by numerical experiments with production data of actual flatness control process, and applied to the 1450 mm tandem cold mill. Numerical experiments and application show that the proposed algorithm not only can satisfy the requirements of response speed, but also have a good accuracy, which can provide a reference for the realisation of high-precision flatness control processes of cold rolled strip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.