A combinatorial optimization problem (COP) is the problem of finding the optimal solution in a finite set. When the size of the feasible solution set is large, the complexity of the problem increases, and it is not easy to solve in a reasonable time with the current classical computer technology. Quantum annealing (QA) is a method that replaces classical simulated annealing (SA) methods that do not solve these cases. Therefore, several attempts have been made to solve this problem using a special-purpose quantum annealer to which the QA method is applied. In this survey, we analyze recent studies that solve real-scale COPs using quantum annealers. Through this, we discuss how to reduce the size of the COP to be input to overcome the hardware limitations of the existing quantum annealer. Additionally, we demonstrated the applicability of quantum annealer to COP on a practical scale by comparing and analyzing the results of the classical simulated annealing (SA) and QA method from each study. INDEX TERMSCombinatorial optimization problem (COP), Simulated annealing (SA), Quantum annealing (QA), Real quantum machine
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.