Chronic left ventricular failure causes pulmonary congestion with increased lung weight and type-2 pulmonary hypertension. Understanding the molecular mechanisms for type-2 pulmonary hypertension and the development of novel treatments for this condition requires a robust experimental animal model and a good understanding of the nature of the resultant pulmonary remodeling. Here we demonstrate that chronic transverse aortic constriction causes massive pulmonary fibrosis and remodeling, and type-2 pulmonary hypertension in mice. Thus, aortic constriction-induced left ventricular dysfunction and increased left ventricular end-diastolic pressure is associated with up to 5.3-fold increase in lung wet weight and dry weight, pulmonary hypertension and right ventricular hypertrophy. Interestingly, the aortic constriction-induced increase in lung weight was not associated with pulmonary edema, but resulted from profound pulmonary remodeling with a dramatic increase in the percentage of fully muscularized lung vessels, marked vascular and lung fibrosis, myofibroblast proliferation, and leukocyte infiltration. The aortic constriction-induced left ventricular dysfunction was also associated with right ventricular hypertrophy, increased right ventricular end-diastolic pressure and right atrial hypertrophy. The massive lung fibrosis, leukocyte infiltration and pulmonary hypertension in mice after transverse aortic constriction clearly indicate that congestive heart failure also causes severe lung disease. The lung fibrosis and leukocyte infiltration may be important mechanisms in the poor clinical outcome in patients with end-stage heart failure. Thus, the effective treatment of left ventricular failure may require additional efforts to reduce lung fibrosis and the inflammatory response.
With advancing age, skeletal muscle function declines as a result of strength loss. These strength deficits are largely due to reductions in muscle size (i.e., quantity) and its intrinsic force-producing capacity (i.e., quality). Age-induced reductions in skeletal muscle quantity and quality can be the consequence of several factors, including accumulation of reactive oxygen and nitrogen species (ROS/RNS), also known as oxidative stress. Therefore, the purpose of this mini-review is to highlight the published literature that has demonstrated links between aging, oxidative stress, and skeletal muscle quantity or quality. In particular, we focused on how oxidative stress has the potential to reduce muscle quantity by shifting protein balance in a deficit, and muscle quality by impairing activation at the neuromuscular junction, excitation-contraction (EC) coupling at the ryanodine receptor (RyR), and cross-bridge cycling within the myofibrillar apparatus. Of these, muscle weakness due to EC coupling failure mediated by RyR dysfunction via oxidation and/or nitrosylation appears to be the strongest candidate based on the publications reviewed. However, it is clear that age-associated oxidative stress has the ability to alter strength through several mechanisms and at various locations of the muscle fiber.
Congestive heart failure (CHF) is associated with an increase of leukocyte infiltration, pro-inflammatory cytokines and fibrosis in the heart and lung. Regulatory T cells (Tregs, CD4+CD25+FoxP3+) suppress inflammatory responses in various clinical conditions. We postulated that expansion of Tregs attenuates CHF progression by reducing cardiac and lung inflammation. We investigated the effects of Interleukin-2 (IL-2) plus IL-2 monoclonal antibody clone JES6-1 complexes (IL2/JES6-1) on induction of Tregs, transverse aortic constriction (TAC)-induced cardiac and lung inflammation and CHF progression in mice. We demonstrated that end-stage CHF caused a massive increase of lung macrophages and T cells, as well as relatively mild LV leukocyte infiltration. Administration of IL2/JES6-1 caused a ~6-fold increase of Tregs within CD4+ T cells in the spleen, lung and heart of mice. IL2/JES6-1 treatment of mice with existing TAC-induced left ventricular (LV) failure markedly reduced lung and right ventricular (RV) weight, and improved LV ejection fraction and LV end-diastolic pressure. Mechanistically, IL2/JES6-1 treatment significantly increased Tregs, suppressed CD4+ T-cell accumulation, dramatically attenuated leukocyte infiltration including decreasing CD45+ cells, macrophages, CD8+ T cells and effector memory CD8+, and reduced pro-inflammatory cytokine expressions and fibrosis in the lung of mice. Furthermore, IL2/JES6-1 administered before TAC attenuated the development of LV hypertrophy and dysfunction in mice. Our data indicate that increasing Tregs through administration of IL2/JES6-1 effectively attenuates pulmonary inflammation, RV hypertrophy and further LV dysfunction in mice with existing LV failure, suggesting strategies to properly expand Tregs may be useful in reducing CHF progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.