Synchronization of weakly coupled oscillators is ubiquitous in biological and chemical complex systems. Recently, research on collective dynamics of many-body systems has been received much attention due to their possible applications in engineering. In this survey paper, we mainly focus on the large-time dynamics of several synchronization models and review state-of-art results on the collective behaviors for synchronization models. Following a chronological order, we begin our discussion with two classical phase models (Winfree and Kuramoto models), and two quantum synchronization models (Lohe and Schrödinger–Lohe models). For these models, we present several sufficient conditions for the emergence of synchronization using mathematical tools from dynamical systems theory, kinetic theory and partial differential equations in a unified framework.
We analyze the dynamics of multi-agent collective behavior models and its control theoretical properties. We first derive a large population limit to parabolic diffusive equations. We also show that the non-local transport equations commonly derived as the mean-field limit, are subordinated to the first one. In other words, the solution of the non-local transport model can be obtained by a suitable averaging of the diffusive one.We then address the control problem in the linear setting, linking the multi-agent model with the spatial semi-discretization of parabolic equations. This allows us to use the existing techniques for parabolic control problems in the present setting and derive explicit estimates on the cost of controlling these systems as the number of agents tends to infinity. We obtain precise estimates on the time of control and the size of the controls needed to drive the system to consensus, depending on the size of the population considered.Our approach, inspired on the existing results for parabolic equations, possibly of fractional type, and in several space dimensions, shows that the formation of consensus may be understood in terms of the underlying diffusion process described by the heat semi-group. In this way, we are able to give precise estimates on the cost of controllability for these systems as the number of agents increases, both in what concerns the needed control time-horizon and the size of the controls.2010 Mathematics Subject Classification. 34D20, 35B36, 65M06, 92D25, 93B05.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.