Dentin
hypersensitivity is attributable to the exposed dentin and
its patent tubules. We proposed the therapeutic management of demineralized
dentin surfaces using a mineralizing adhesive to seal and remineralize
dentin, dentinal tubules, and odontoblast processes. An experimental
self-etch adhesive and a mineralizing adhesive consisting of the self-etch
adhesive and 20 wt % poly-aspartic acid-stabilized amorphous calcium
phosphate (PAsp-ACP) nanoparticles were prepared and characterized
by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy,
transmission electron microscopy (TEM), and scanning electron microscopy.
After 60 acid-etched midcoronal dentin disks were treated with distilled
water (control), a desensitizing agent (Gluma), the experimental self-etch
adhesive, and the mineralizing adhesive, dentin permeability was measured
and mineralization was evaluated by Raman, FTIR, XRD, TEM, and selected-area
electron diffraction, irrespective of abrasive and acidic challenges.
In vitro cytotoxicity of the adhesive and the mineralizing adhesive
was assessed by Cell Counting Kit-8. The mineralizing adhesive possessed
excellent biocompatibility. We proposed a hybrid mineralization layer
composed of the light-cured mineralizing adhesive and the mineralized
dentin surfaces, as well as interiorly mineralized resin tags and
odontoblast processes inside of the dentinal tubules. This hybrid
mineralization not only reduced dentin permeability but also resisted
abrasive and acidic attacks.
To evaluate the effects of airborne particle abrasion (APA) combined with MDP-containing resin cement, a glass-ceramic spray deposition (GCSD) method on the shear bond strengths (SBSs) and durability of 3 mol% yttrium oxide-stabilized zirconia ceramic (3Y-TZP) compared with lithium disilicate glass ceramics (LDGC). 3Y-TZP disks were randomly treated as follows: for Group APA+MDP, 3Y-TZP was abrased using 50 μm Al2O3 particles under 0.1 Mpa and bonded with MDP-containing resin cement; for Group GCSD, 3Y-TZP was treated with the GCSD method, etched by 5% HF for 90 s, silanized and bonded with resin cement without MDP. Group LDGC was bonded as the Group GCSD. X-ray diffraction (XRD), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray detector (EDX) were used to analyze the surface chemical and micro-morphological changes of the ceramics before bonding. The bonded ceramic specimens were randomly divided into subgroups, and the SBSs were determined before and after 10,000 thermocycling. The SBSs were analyzed with a one-way ANOVA analysis. Failure modes were determined with optical microscopy and SEM. The XRD, ATR-FTIR and XPS results identified the formation of lithium disilicate and zirconium silicate on 3Y-TZP after GCSD. The SEM micrographs revealed that 3Y-TZP surfaces were roughened by APA, while 3Y-TZP with GCSD and LDGC surfaces could be etched by HF to be porous. The APA treatment combined with MDP-containing resin cement produced the high immediate zirconia shear bond strengths (SBSs: 37.41 ± 13.51 Mpa) that was similar to the SBSs of the LDGC (34.87 ± 11.02 Mpa, p > 0.05), but, after thermocycling, the former dramatically decreased (24.00 ± 6.86 Mpa, maximum reduction by 35.85%) and the latter exhibited the highest SBSs (30.72 ± 7.97 Mpa, minimum reduction by 11.9%). The 3Y-TZP with GCSD treatment displayed the lower zirconia SBSs before thermocycling (27.03 ± 9.76 Mpa, p < 0.05), but it was similar to the 3Y-TZP treated with APA and MDP containing resin cement after thermocycling (21.84 ± 7.03 vs. 24.00 ± 6.86 Mpa, p > 0.05). The APA combined with MDP-containing resin cement could achieve the high immediate zirconia SBSs of those of the LDGC, but it decreased significantly after thermocycling. The GCSD technique could yield the immediate zirconia SBSs similar to those of LDGC before thermocycling, and long-term zirconia SBSs were similar to those of 3Y-TZP treated with APA followed by MDP-containing resin cement after thermocycling. Hence, the GCSD technique could enrich zirconia surface treatments and is an alternative to zirconia surface pretreatment for 3Y-TZP bond durability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.