Nowadays, many network representation learning algorithms and downstream network mining tasks have already paid attention to dynamic networks or temporal networks, which are more suitable for real-world complex scenarios by modeling evolving patterns and temporal dependencies between node interactions. Moreover, representing and mining temporal networks have a wide range of applications, such as fraud detection, social network analysis, and drug discovery. To contribute to the network representation learning and network mining research community, in this paper, we generate a new biological dataset of dynamic protein-protein interaction networks (i.e., DPPIN), which consists of twelve dynamic protein-level interaction networks of yeast cells at different scales. We first introduce the generation process of DPPIN. To demonstrate the value of our published dataset DPPIN, we then list the potential applications that would be benefited. Furthermore, we design dynamic local clustering, dynamic spectral clustering, dynamic subgraph matching, dynamic node classification, and dynamic graph classification experiments, where DPPIN indicates future research opportunities for some tasks by presenting challenges on state-of-the-art baseline algorithms. Finally, we identify future directions for improving this dataset utility and welcome inputs from the community. All resources of this work are deployed and publicly available at https://github.com/DongqiFu/DPPIN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.