The novel coronavirus disease (COVID-19) has rapidly spread around the globe in 2020, with the US becoming the epicenter of COVID-19 cases since late March. As the US begins to gradually resume economic activity, it is imperative for policymakers and power system operators to take a scientific approach to understanding and predicting the impact on the electricity sector. Here, we release a first-of-its-kind cross-domain open-access data hub, integrating data from across all existing US wholesale electricity markets with COVID-19 case, weather, mobile device location, and satellite imaging data. Leveraging cross-domain insights from public health and mobility data, we rigorously uncover a significant reduction in electricity consumption that is strongly correlated with the number of COVID-19 cases, degree of social distancing, and level of commercial activity.
The novel coronavirus disease (COVID-19) has rapidly spread around the globe in 2020, with the U.S. becoming the epicenter of COVID-19 cases since late March. As the U.S. begins to gradually resume economic activity, it is imperative for policymakers and power system operators to take a scientific approach to understanding and predicting the impact on the electricity sector.Here, we release a first-of-its-kind cross-domain open-access data hub, integrating data from across all existing U.S. wholesale electricity markets with COVID-19 case, weather, mobile device location, and satellite imaging data. Leveraging cross-domain insights from public health and mobility data, we rigorously uncover a significant reduction in electricity consumption that is strongly correlated with the number of COVID-19 cases, degree of social distancing, and level of commercial activity.
This paper envisions a new control architecture for the protective relay setting in future power distribution systems. With deepening penetration of distributed energy resources at the end users level, it has been recognized as a key engineering challenge to redesign the protective relays in the future distribution system. Conceptually, these protective relays are the discrete ON/OFF control devices at the end of each branch and node in a power network. The key technical difficulty lies in how to set up the relay control logic so that the protection could successfully differentiate heavy load and faulty operating conditions. This paper proposes a new nested reinforcement learning approach to take advantage of the structural properties of distribution networks and develop a new set of training methods for tuning the protective relays.
The electric grid is a key enabling infrastructure for the ambitious transition towards carbon neutrality as we grapple with climate change. With deepening penetration of renewable resources, the reliable operation of the electric grid becomes increasingly challenging. In this paper, we present PSML, a first-of-its-kind open-access multi-scale time-series dataset, to aid in the development of data-driven machine learning (ML)-based approaches towards reliable operation of future electric grids. The dataset is synthesized from a joint transmission and distribution electric grid to capture the increasingly important interactions and uncertainties of the grid dynamics, containing power, voltage and current measurements over multiple spatio-temporal scales. Using PSML, we provide state-of-the-art ML benchmarks on three challenging use cases of critical importance to achieve: (i) early detection, accurate classification and localization of dynamic disturbances; (ii) robust hierarchical forecasting of load and renewable energy; and (iii) realistic synthetic generation of physical-law-constrained measurements. We envision that this dataset will provide use-inspired ML research in safety-critical systems, while simultaneously enabling ML researchers to contribute towards decarbonization of energy sectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.