Plants are constantly challenged by a multitude of pathogens and pests, which causes massive yield and quality losses annually. A promising approach to reduce such losses is to enhance the immune system of plants through genetic engineering. Previous work has shown that laccases (p-diphenol:dioxygen oxidoreductase, EC 1.10.3.2) function as lignin polymerization enzymes. Here we demonstrate that transgenic manipulation of the expression of the laccase gene GhLac1 in cotton (Gossypium hirsutum) can confer an enhanced defense response to both pathogens and pests. Overexpression of GhLac1 leads to increased lignification, associated with increased tolerance to the fungal pathogen Verticillium dahliae and to the insect pests cotton bollworm (Helicoverpa armigera) and cotton aphid (Aphis gosypii). Suppression of GhLac1 expression leads to a redirection of metabolic flux in the phenylpropanoid pathway, causing the accumulation of JA and secondary metabolites that confer resistance to V. dahliae and cotton bollworm; it also leads to increased susceptibility to cotton aphid. Plant laccases therefore provide a new molecular tool to engineer pest and pathogen resistance in crops.
Summary MtPAR is a proanthocyanidin (PA) biosynthesis regulator; the mechanism underlying its promotion of PA biosynthesis is not fully understood. Here, we showed that MtPAR promotes PA production by a direct repression of biosynthesis of isoflavones, the major flavonoids in legume, and by redirecting immediate precursors, such as anthocyanidins, flux into PA pathway. Ectopic expression of MtPAR repressed isoflavonoid production by directly binding and suppressing isoflavone biosynthetic genes such as isoflavone synthase (IFS). Meanwhile, MtPAR up‐regulated PA‐specific genes and decreased the anthocyanin levels without altering the expression of anthocyanin biosynthetic genes. MtPAR may shift the anthocyanidin precursor flux from anthocyanin pathway to PA biosynthesis. MtPAR complemented PA‐deficient phenotype of Arabidopsis tt2 mutant seeds, demonstrating their similar action on PA production. We showed the direct interactions between MtPAR, MtTT8 and MtWD40‐1 proteins from Medicago truncatula and Glycine max, to form a ternary complex to trans‐activate PA‐specific ANR gene. Finally, MtPAR expression in alfalfa (Medicago sativa) hairy roots and whole plants only promoted the production of small amount of PAs, which was significantly enhanced by co‐expression of MtPAR and MtLAP1. Transcriptomic and metabolite profiling showed an additive effect between MtPAR and MtLAP1 on the production of PAs, supporting that efficient PA production requires more anthocyanidin precursors. This study provides new insights into the role and mechanism of MtPAR in partitioning precursors from isoflavone and anthocyanin pathways into PA pathways for a specific promotion of PA production. Based on this, a strategy by combining MtPAR and MtLAP1 co‐expression to effectively improve metabolic engineering performance of PA production in legume forage was developed.
SummaryAmino acids are both constituents of proteins, providing the essential nutrition for humans and animals, and signalling molecules regulating the growth and development of plants. Most cultivars of maize are deficient in essential amino acids such as lysine and tryptophan. Here, we measured the levels of 17 different total amino acids, and created 48 derived traits in mature kernels from a maize diversity inbred collection and three recombinant inbred line (RIL) populations. By GWAS, 247 and 281 significant loci were identified in two different environments, 5.1 and 4.4 loci for each trait, explaining 7.44% and 7.90% phenotypic variation for each locus in average, respectively. By linkage mapping, 89, 150 and 165 QTLs were identified in B73/By804, Kui3/B77 and Zong3/Yu87‐1 RIL populations, 2.0, 2.7 and 2.8 QTLs for each trait, explaining 13.6%, 16.4% and 21.4% phenotypic variation for each QTL in average, respectively. It implies that the genetic architecture of amino acids is relative simple and controlled by limited loci. About 43.2% of the loci identified by GWAS were verified by expression QTL, and 17 loci overlapped with mapped QTLs in the three RIL populations. GRMZM2G015534, GRMZM2G143008 and one QTL were further validated using molecular approaches. The amino acid biosynthetic and catabolic pathways were reconstructed on the basis of candidate genes proposed in this study. Our results provide insights into the genetic basis of amino acid biosynthesis in maize kernels and may facilitate marker‐based breeding for quality protein maize.
BackgroundStrigolactones (SLs) play important roles in controlling root growth, shoot branching, and plant-symbionts interaction. Despite the importance, the components of SL biosynthesis and signaling have not been unequivocally explored in soybean.ResultsHere we identified the putative components of SL synthetic enzymes and signaling proteins in soybean genome. Soybean genome contains conserved MORE AXILLARY BRANCHING (MAX) orthologs, GmMAX1s, GmMAX2s, GmMAX3s, and GmMAX4s. The tissue expression patterns are coincident with SL synthesis in roots and signaling in other tissues under normal conditions. GmMAX1a, GmMAX2a, GmMAX3b, and GmMAX4a expression in their Arabidopsis orthologs’ mutants not only restored most characteristic phenotypes, such as shoot branching and shoot height, leaf shape, primary root length, and root hair growth, but also restored the significantly changed hormone contents, such as reduced JA and ABA contents in all mutant leaves, but increased auxin levels in atmax1, atmax3 and atmax4 mutants. Overexpression of these GmMAXs also altered the hormone contents in wild-type Arabidopsis. GmMAX3b was further characterized in soybean nodulation with overexpression and knockdown transgenic hairy roots. GmMAX3b overexpression (GmMAX3b-OE) lines exhibited increased nodule number while GmMAX3b knockdown (GmMAX3b-KD) decreased the nodule number in transgenic hairy roots. The expression levels of several key nodulation genes were also altered in GmMAX3b transgenic hairy roots. GmMAX3b overexpression hairy roots had reduced ABA, but increased JA levels, with no significantly changed auxin content, while the contrast changes were observed in GmMAX3b-KD lines. Global gene expression in GmMAX3b-OE or GmMAX3b-KD hairy roots also revealed that altered expression of GmMAX3b in soybean hairy roots changed several subsets of genes involved in hormone biosynthesis and signaling and transcriptional regulation of nodulation processes.ConclusionsThis study not only revealed the conservation of SL biosynthesis and signaling in soybean, but also showed possible interactions between SL and other hormone synthesis and signaling during controlling plant development and soybean nodulation. GmMAX3b-mediated SL biosynthesis and signaling may be involved in soybean nodulation by affecting both root hair formation and its interaction with rhizobia.Electronic supplementary materialThe online version of this article (10.1186/s12870-017-1182-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.