Xanthomonas campestris pv. campestris (Xcc)-induced black rot is one of the most serious diseases in cruciferous plants. Using beneficial microbes to control this disease is promising. In our preliminary work, we isolated a bacterial strain (JR48) from a vegetable field. Here, we confirmed the plant-growth-promoting (PGP) effects of JR48 in planta, and identified JR48 as a Priestia megaterium strain. We found that JR48 was able to induce plant resistance to Xcc and prime plant defense responses including hydrogen peroxide (H2O2) accumulation and callose deposition with elevated expression of defense-related genes. Further, JR48 promoted lignin biosynthesis and raised accumulation of frees salicylic acid (SA) as well as expression of pathogenesis-related (PR) genes. Finally, we confirmed that JR48-induced plant resistance and defense responses requires SA signaling pathway. Together, our results revealed that JR48 promotes plant growth and induces plant resistance to the crucifer black rot probably through reinforcing SA accumulation and response, highlighting its potential as a novel biocontrol agent in the future.
Botryosphaeria dothidea-induced apple ring rot is one of the most serious postharvest diseases in apple production. In our preliminary work, we isolated a bacterial strain (FX2) from an infested apple orchard. Here, we confirmed the strong antifungal activity of FX2 on B. dothidea. Through phylogenetic analysis and morphological observations, we identified FX2 as a Bacillus amyloliquefaciens strain. We also found that 10% cell-free supernatant (CFS) of FX2 significantly affected mycelial growth and morphology and almost completely inhibited spore germination and germ tube elongation in B. dothidea. Furthermore, 10% CFS damaged the cell ultrastructure, resulting in a remarkable increase in cellular leakage in B. dothidea mycelia. Thus, CFS has the potential to effectively reduce in vivo B. dothidea infection, reduced lesion diameters to 64.7% compared with the control group, and reduced disease incidence by 15%. Finally, ultrafiltration, desalting chromatography, and anion exchange chromatography showed that the antifungal constituents in CFS are composed mainly of antifungal proteins. We further characterized these potential antifungal proteins via liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Herein, we provide novel insights into the antifungal mechanisms of B. amyloliquefaciens FX2, and we highlight its potential as a novel biocontrol agent for controlling postharvest apple ring rot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.