Localized magnetic heating in magnetic nanoparticles caused by an alternating magnetic field (AMF) can facilitate electrocatalytic reactions, which has become an emerging strategy to further enhance overall efficiency of catalysts and frontier in an electrocatalysis field. However, the investigation of AMF-assisted electrocatalysis is still in its infancy, and how to efficiently utilize magnetic heating in magnetic nanoparticles to boost electrocatalysis reactions is in great demand. In this work, a feasible design is proposed by using Néel relaxation, efficient local heating generated in superparamagnetic CoSe2 nanoparticles confined in an amorphous carbon matrix by AMF leading to improved catalytic performance. The rapid oxygen evolution reaction enhancement of CoSe2 nanoparticles responses to switched on/off AMF, indicating that the localized magnetic heating is generated in catalysts by Néel relaxation with magnetic moments of nanoparticles rapidly flipping under AMF. Our work inspires insight to design AMF-assisted electrocatalysts and inject power into the field of electrocatalysis.
Superparamagnetic Core/Catalytic Shell Heterostructures
In article number 2205665, Cailei Yuan and co‐workers design and successfully prepare electrochemical‐reconstructed NiFe/NiFeOOH core/shell nanoparticles confined in highly conductive amorphous carbon matrix. Benefiting from the unique superparamagnetic NiFe/catalytic NiFeOOH core/shell heterostructure, their oxygen evolution reaction performance is improved significantly with an alternating magnetic field stimulation as the consequence of magnetic heating effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.