Angiogenesis is a vital endogenous brain self-repair processes for neurological recovery after intracerebral hemorrhage (ICH). Increasing evidence suggests that leptin potentiates angiogenesis and plays a beneficial role in stroke. However, the proangiogenic effect of leptin on ICH has not been adequately explored. Moreover, leptin triggers post-ICH angiogenesis through pericyte, an important component of forming new blood vessels, which remains unclear. Here, we reported that exogenous leptin infusion dose-dependent promoted vascular endothelial cells survival and proliferation at chronic stage of ICH mice. Additionally, leptin robustly ameliorated pericytes loss, enhanced pericytes proliferation and migration in ICH mice in vivo, and in ICH human brain microvascular pericytes (HBVPC) in vitro. Notably, we showed that pericytes-derived pro-angiogenic factors were responsible for enhancing the survival, proliferation and tube formation followed leptin treatment in human brain microvascular endothelial cells (HCMEC/D3)/HBVPC co-culture models. Importantly, considerable improvements in neurobehavioral function and hostile microenvironment were observed in leptin treatment ICH mice, indicating that better vascular functionality post ICH improves outcome. Mechanistically, this study unveiled that leptin boost post-ICH angiogenesis potentially through modulation of leptin receptor (leptinR)/Signal Transducer and Activator of Transcription 3 (STAT3) signaling pathway in pericyte. Thus, leptin may be a lucrative option for the treatment of ICH.
Spatial transcriptome technology acquires gene expression profiles while retaining spatial location information, it displays the gene expression properties of cells in situ. Through the investigation of cell heterogeneity, microenvironment, function, and cellular interactions, spatial transcriptome technology can deeply explore the pathogenic mechanisms of cell-type-specific responses and spatial localization in neurological diseases. The present article overviews spatial transcriptome technologies based on microdissection, in situ hybridization, in situ sequencing, in situ capture, and live cell labeling. Each technology is described along with its methods, detection throughput, spatial resolution, benefits, and drawbacks. Furthermore, their applications in neurodegenerative disease, neuropsychiatric illness, stroke and epilepsy are outlined. This information can be used to understand disease mechanisms, pick therapeutic targets, and establish biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.