Background
Lung cancer is one of the most lethal cancers worldwide. Cisplatin, a widely used anti‐lung cancer drug, has been limited in clinical application due to its drug resistance. Medicines targeting mitochondrial electron transport chain (ETC) complexes may be effective candidates for cisplatin‐based chemotherapy.
Methods
In this study, the small molecule drug library from Food and Drug Administration FDA was used to screen for medicines targeting ETC. MTT and colony formation assays were used to investigate cell proliferation. Flow cytometry was employed to analyze cell cycle, apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential. Wound scratch and transwell assays were used to detect migration and invasion abilities. The activities of the ETC complex were tested using kits. Western blot analysis was used to investigate the expressions of related proteins. A mouse xenograft model was constructed to verify the antitumor effect in vivo.
Results
The results showed that mubritinib can reduce the activation of the PI3K/mTOR signal pathway, disrupt mitochondrial function, significantly increase ROS levels and induce oxidative stress, and ultimately exert its antitumor effect against non‐small cell lung cancer (NSCLC) both in vivo and in vitro. In addition, the combination of cisplatin and mubritinib can improve the tumor‐suppressive effect of cisplatin.
Conclusion
Mubritinib can upregulate intracellular ROS concentration and cell apoptosis, inhibit the PI3K signaling pathway and interfere with the function of mitochondria, thus reducing cell proliferation and increasing ROS induced apoptosis by reducing the activation of Nrf2 by PI3K.
Background
The prognosis and survival of lung adenocarcinoma (LUAD) patients are still not promising despite recent breakthroughs in treatment. Endoplasmic reticulum stress (ERS) is a self-protective mechanism resulting from an imbalance in quality control of unfolded proteins when cells are stressed, which plays an active role in lung cancer development, but the relationship between ERS and the pathological characteristics and clinical prognosis of LUAD patients remains unclear.
Methods
LASSO and Cox regression were applied based on sequencing information to construct the model, which was validated to be robust. The risk scores of the patients were calculated using the formula provided by the model, and the patients were divided into high and low-risk groups according to the median cut-off of risk scores. Cox regression analysis identifies independent prognostic factors for these patients, and enrichment analysis of prognosis-related genes was also performed. The relationship between risk scores and tumor mutation burden (TMB), cancer stem cell index, and drug sensitivity was explored.
Results
We constructed a 13-gene prognostic model for LUAD patients. Patients in the high-risk group had worse overall survival, lower immune score and ESTIMATE score, higher TMB, higher cancer stem cell index, and higher sensitivity to conventional chemotherapeutic agents. In addition, we constructed a nomogram that predicts 5-year survival in LUAD patients, which helps clinicians to foresee the prognosis from a new perspective.
Conclusions
Our results highlight the association of ERS with LUAD and the potential use of ERS in guiding treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.