Elevated arsenic (As) in groundwater poses a great threat to human health. Coagulation using mono-and poly-Fe salts is becoming one of the most cost-effective processes for groundwater As removal. However, a limitation comes from insufficient understanding of the As removal mechanism from groundwater matrices in the coagulation process, which is critical for groundwater treatment and residual solid disposal. Here, we overcame this hurdle by utilizing microscopic techniques to explore molecular As surface complexes on the freshly formed Fe flocs and compared ferric(III) sulfate (FS) and polyferric sulfate (PFS) performance, and finally provided a practical solution in As-geogenic areas. FS and PFS exhibited a similar As removal efficiency in coagulation and coagulation/filtration in a two-bucket system using 5 mg/L Ca(ClO) 2 . By using the two-bucket system combining coagulation and sand filtration, 500 L of As-safe water (< 10 μg/L) was achieved during five treatment cycles by washing the sand layer after each cycle. Fe k-edge X-ray absorption near-edge structure (XANES) and As k-edge extended X-ray absorption fine structure (EXAFS) analysis of the solid residue indicated that As formed a bidentate binuclear complex on ferrihydrite, with no observation of scorodite or poorly-crystalline ferric arsenate. Such a stable surface complex is beneficial for As immobilization in the solid residue, as confirmed by the achievement of much lower leachate As (0.9 μg/L-0.487 mg/L) than the US EPA regulatory limit (5 mg/L). Finally, PFS is superior to FS because of its lower dose, much lower solid residue, and lower cost for As-safe drinking water.
The rapid redox transformation of arsenic (As) species in waters presents a great environmental challenge in the accurate determination of its concentration and toxicity. The motivation of the present study was therefore to develop a method for rapid on-site separation of As(V) and As(III) in various aqueous matrices. The authors synthesized a thiol-modified sand (T-sand) that selectively removed As(III) but did not adsorb As(V). The novel application of this T-sand in a disposable cartridge was able to successfully separate As(V) (37-970 µg L(-1) ) and As(III) (not detected to 488 µg L(-1) ) in 23 groundwater samples collected in areas with naturally occurring As. The As speciation results determined with T-sand separation in the field were consistent with those obtained using high-performance liquid chromatography-atomic fluorescence spectrometry. Furthermore, the T-sand cartridge was applicable in a wide variety of matrices, including groundwater, leachants of the toxicity-characteristic leaching procedure, and extracts from the California waste extraction test; sequential extraction test; and in vitro gastrointestinal extraction. This easy-to-use separation method is especially suitable for routine field monitoring of As speciation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.