Objectives MicroRNA deregulation is a critical event in head and neck squamous cell carcinoma (HNSCC). Several microRNA profiling studies aimed at deciphering the microRNA signatures of HNSCC have been reported, but there tends to be poor agreement among studies. The objective of this study was to survey the published microRNA profiling studies on HNSCC, and to assess the commonly deregulated microRNAs in an independent sample set. Materials and Methods Meta-analysis of 13 published microRNA profiling studies was performed to define microRNA signatures in HNSCC. Selected microRNAs (including members of miR-99 family) were evaluated in an independent set of HNSCC cases. The potential contributions of miR-99 family to the tumorigenesis of HNSCC were assessed by in vitro assays. Results We identified 67 commonly deregulated microRNAs. The up-regulation of miR-21, miR-155, miR-130b, miR-223 and miR-31, and the down-regulation of miR-100, miR-99a and miR-375 were further validated in an independent set of HNSCC cases with quantitative RT-PCR. Among these validated microRNAs, miR-100 and miR-99a belong to the miR-99 family. Our in vitro study demonstrated that restoration of miR-100 to the HNSCC cell lines suppressed cell proliferation and migration, and enhanced apoptosis. Furthermore, ectopic transfection of miR-99 family members down-regulated the expression of insulin-like growth factor 1 receptor (IGF1R) and mechanistic target of rapamycin (mTOR) genes. Conclusion In summary, we described a panel of frequently deregulated microRNAs in HNSCC, including members of miR-99 family. The deregulation of miR-99 family contributes to the tumorigenesis of HNSCC, in part by targeting IGF1R and mTOR signaling pathways.
BackgroundRadiation caries is a complication of radiotherapy characterized by enamel erosion and dentin exposure. The mechanisms of characteristic radiation caries formation are not well-understood. The aim of this study was to evaluate the direct radiation-induced effects on dental hard tissue and investigate their role in the formation of radiation caries.MethodsSixty non-carious third molars were divided into three groups (n = 20), which would be exposed to 0 Gy, 30 Gy, and 60 Gy radiation, respectively. After radiation, microhardness and elastic modulus were measured at four depths by means of a Vickers microhardness tester and atomic force microscopy (AFM). The microstructure was observed by scanning electron microscopy (SEM). X-ray diffraction and Raman microspectroscopy were used to determine crystal properties and protein/mineral (2931/960 cm− 1) ratios.ResultsA statistically significant decrease in microhardness and elastic modulus values 50 μm from the dentino-enamel junction (DEJ) in enamel was revealed in the 30-Gy and 60-Gy groups. With the increasing dose, destruction of interprismatic substance and fissures at the DEJ-adjacent region were found. A greater reduction of crystallinity was revealed in enamel compared with dentin. Raman spectroscopic analysis showed a slight increase of the protein/mineral ratio for enamel following accumulated radiation, while the protein/mineral ratio for dentin was decreased.ConclusionsRadiation could directly alter the mechanical properties, micro-morphology, crystal properties, and chemical composition of dental hard tissue. The early destruction of DEJ-adjacent enamel, combined with decreased crystallinity of enamel under radiation exposure, may be related to the formation of characteristic radiation caries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.