Leaf size and shape are mainly determined by coordinated cell division and differentiation in lamina. The CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors are key regulators of leaf development. However, the mechanisms that control TCP activities during leaf development are largely unknown. We identified the TCP Interactor containing EAR motif protein1 (TIE1), a novel transcriptional repressor, as a major modulator of TCP activities during leaf development. Overexpression of TIE1 leads to hyponastic and serrated leaves, whereas disruption of TIE1 causes epinastic leaves. TIE1 is expressed in young leaves and encodes a transcriptional repressor containing a C-terminal EAR motif, which mediates interactions with the TOPLESS (TPL)/TOPLESS-RELATED (TPR) corepressors. In addition, TIE1 physically interacts with CIN-like TCPs. We propose that TIE1 regulates leaf size and morphology by inhibiting the activities of TCPs through recruiting the TPL/TPR corepressors to form a tertiary complex at early stages of leaf development.
Rice blast disease is a major threat to rice production worldwide, but the mechanisms underlying rice resistance to the causal agent Magnaporthe oryzae remain elusive. Therefore, we carried out a transcriptome study on rice early defense response to M. oryzae. We found that the transcriptional profiles of rice compatible and incompatible interactions with M. oryzae were mostly similar, with genes regulated more prominently in the incompatible interactions. The functional analysis showed that the genes involved in signaling and secondary metabolism were extensively up-regulated. In particular, WRKY transcription factor genes were significantly enriched among the up-regulated genes. Overexpressing one of these WRKY genes, OsWRKY47, in transgenic rice plants conferred enhanced resistance against rice blast fungus. Our results revealed the sophisticated transcriptional reprogramming of signaling and metabolic pathways during rice early response to M. oryzae and demonstrated the critical roles of WRKY transcription factors in rice blast resistance.
Ovules are essential for plant reproduction and develop into seeds after fertilization. SPOROCYTELESS/NOZZLE (SPL/NZZ) has been known for more than 15 years as an essential factor for ovule development in Arabidopsis, but the biochemical nature of SPL function has remained unsolved. Here, we demonstrate that SPL functions as an adaptor-like transcriptional repressor. We show that SPL recruits TOPLESS/TOPLESS-RELATED (TPL/TPR) co-repressors to inhibit the CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors. We reveal that SPL uses its EAR motif at the C-terminal end to recruit TPL/TPRs and its N-terminal part to bind and inhibit the TCPs. We demonstrate that either disruption of TPL/TPRs or overexpression of TCPs partially phenocopies the defects of megasporogenesis in spl. Moreover, disruption of TCPs causes phenotypes that resemble spl-D gain-of-function mutants. These results define the action mechanism for SPL, which along with TPL/TPRs controls ovule development by repressing the activities of key transcription factors. Our findings suggest that a similar gene repression strategy is employed by both plants and fungi to control sporogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.