The sensitivity and specificity of clinical diagnostic indicators and non-invasive diagnostic methods for endometriosis at early stage is not optimal. Previous studies demonstrated that abnormal lipid metabolism was involved in the pathological development of endometriosis. Our cross-sectional study included 21 patients with laparoscopically confirmed endometriosis at stage I–II and 20 infertile women who underwent diagnostic laparoscopy combined with hysteroscopy from January 2014 to January 2015. Eutopic endometrium was collected by pipelle endometrial biopsy. Lipid metabolites were quantified by ultra-high performance liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (UHPLC-ESI-HRMS). Lipid profiles of endometriosis patients at early stage (I–II) was characterized by a decreased concentration of phosphatidylcholine (18:1/22:6), (20:1/14:1), (20:3/20:4), and phosphatidylserine (20:3/23:1) and an increased concentration of phosphatidic acid (25:5/22:6) compared with control. The synthesized predicting strategy with 5 biomarkers has a specificity of 75.0% and a sensitivity of 90.5%. Lipid profile of eutopic endometrium in endometriosis was effectively characterized by UHPLC-ESI-HRMS-based metabolomics. Our study demonstrated the alteration of phosphatidic acid, phosphatidylcholine, phosphatidylserine metabolites in endometriosis and provided potential biomarkers for semi-invasive diagnose of endometriosis at early stage.
BACKGROUND AND PURPOSECurrently, ursodeoxycholic acid and obeticholic acid are the only two FDA-approved drugs for cholestatic liver diseases. Thus, new therapeutic approaches need to be developed. Here we have evaluated the anti-cholestasis effects of Schisandrol B (SolB), a bioactive compound isolated from Schisandra sphenanthera. EXPERIMENTAL APPROACHHepatoprotective effect of SolB against intrahepatic cholestasis, induced by lithocholic acid (LCA), was evaluated in mice. Metabolomic analysis and gene analysis were used to assess involvement of pregnane X receptor (PXR). Molecular docking, cellbased reporter gene analysis and knockout mice were used to demonstrate the critical role of the PXR pathway in the anticholestasis effects of SolB. KEY RESULTSSolB protected against LCA-induced intrahepatic cholestasis. Furthermore, therapeutic treatment with SolB decreased mortality in cholestatic mice. Metabolomics and gene analysis showed that SolB accelerated metabolism of bile acids, promoted bile acid efflux into the intestine, and induced hepatic expression of the PXR-target genes Cyp3a11, Ugt1a1, and Oatp2, which are involved in bile acid homeostasis. Mechanistic studies showed that SolB activated human PXR and up-regulated PXR target genes in human cell lines. Additionally, SolB did not protect Pxr-null mice from liver injury induced by intrahepatic cholestasis, thus providing genetic evidence that the effect of SolB was PXR-dependent. CONCLUSION AND IMPLICATIONSThese findings provide direct evidence for the hepatoprotective effects of SolB against cholestasis by activating PXR. Therefore, SolB may provide a new and effective approach to the prevention and treatment of cholestatic liver diseases.
BackgroundThe sensitivity and specificity of non-invasive diagnostic methods for endometriosis, especially at early stages, are not optimal. The clinical diagnostic indicator cancer antigen 125 (CA125) performs poorly in the diagnosis of minimal endometriosis, with a sensitivity of 24%. Therefore, it is urgent to explore novel diagnostic biomarkers. We evaluated the metabolomic profile variation of the eutopic endometrium between minimal-mild endometriosis patients and healthy women by ultra-high-performance liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (UHPLC-ESI-HRMS).MethodsOur study comprised 29 patients with laparoscopically confirmed endometriosis at stages I-II and 37 infertile women who underwent diagnostic laparoscopy combined with hysteroscopy from January 2014 to January 2015. Eutopic endometrium samples were collected by pipelle endometrial biopsy. The metabolites were quantified by UHPLC-ESI-HRMS. The best combination of biomarkers was then selected by performing step-wise logistic regression analysis with backward elimination.ResultsTwelve metabolites were identified as endometriosis-associated biomarkers. The eutopic endometrium metabolomic profile of the endometriosis patients was characterized by a significant increase in the concentration of hypoxanthine, L-arginine, L-tyrosine, leucine, lysine, inosine, omega-3 arachidonic acid, guanosine, xanthosine, lysophosphatidylethanolamine and asparagine. In contrast, the concentration of uric acid was decreased. Metabolites were filtered by step-wise logistic regression with backward elimination, and a model containing uric acid, hypoxanthine, and lysophosphatidylethanolamine was constructed. Receiver-operating characteristic (ROC) analysis confirmed the prognostic value of these parameters for the diagnosis of minimal/mild endometriosis with a sensitivity of 66.7% and a specificity of 90.0%.ConclusionsMetabolomics analysis of the eutopic endometrium in endometriosis was effectively characterized by UHPLC-ESI-HRMS-based metabolomics. Our study supports the importance of purine and amino acid metabolites in the pathophysiology of endometriosis and provides potential biomarkers for semi-invasive diagnosis of early-stage endometriosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.