Cellular senescence is a fundamental biological process that has profound implications in cancer development and therapeutics, but the underlying mechanisms remain elusive. Here we show that carnitine palmitoyltransferase 1C (CPT1C), an enzyme that catalyzes carnitinylation of fatty acids for transport into mitochondria for β-oxidation, plays a major role in the regulation of cancer cell senescence through mitochondria-associated metabolic reprograming. Metabolomics analysis suggested alterations in mitochondria activity, as revealed by the marked decrease in acylcarnitines in senescent human pancreatic carcinoma PANC-1 cells, indicating low CPT1C activity. Direct analyses of mRNA and protein show that CPT1C is significantly reduced in senescent cells. Furthermore, abnormal mitochondrial function was observed in senescent PANC-1 cells, leading to lower cell survival under metabolic stress and suppressed tumorigenesis in a mouse xenograft model. Knock-down of CPT1C in PANC-1 cells induced mitochondrial dysfunction, caused senescence-like growth suppression and cellular senescence, suppressed cell survival under metabolic stress, and inhibited tumorigenesis in vivo. Further, CPT1C knock-down suppressed xenograft tumor growth in situ. Silencing of CPT1C in five other tumor cell lines also caused cellular senescence. On the contrary, gain-of-function of CPT1C reversed PANC-1 cell senescence and enhanced mitochondrial function. This study identifies CPT1C as a novel biomarker and key regulator of cancer cell senescence through mitochondria-associated metabolic reprograming, and suggests that inhibition of CPT1C may represent a new therapeutic strategy for cancer treatment through induction of tumor senescence.
Carnitine palmitoyltransferase 1C (CPT1C), an enzyme located in the outer mitochondria membrane, has a crucial role in fatty acid transport and oxidation. It is also involved in cell proliferation and is a potential driver for cancer cell senescence. However, its upstream regulatory mechanism is unknown. Peroxisome proliferator activated receptor α (PPARα) is a ligand-activated transcription factor that regulates lipid metabolism and tumor progression. The current study aimed to elucidate whether and how PPARα regulates CPT1C and then affects cancer cell proliferation and senescence. Here, for the first time we report that PPARα directly activated CPT1C transcription and CPT1C was a novel target gene of PPARα, as revealed by dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays. Moreover, regulation of CPT1C by PPARα was p53-independent. We further confirmed that depletion of PPARα resulted in low CPT1C expression and then inhibited proliferation and induced senescence of MDA-MB-231 and PANC-1 tumor cell lines in a CPT1C-dependent manner, while forced PPARα overexpression promoted cell proliferation and reversed cellular senescence. Taken together, these results indicate that CPT1C is a novel PPARα target gene that regulates cancer cell proliferation and senescence. The PPARα-CPT1C axis may be a new target for the intervention of cancer cellular proliferation and senescence.
The sensitivity and specificity of clinical diagnostic indicators and non-invasive diagnostic methods for endometriosis at early stage is not optimal. Previous studies demonstrated that abnormal lipid metabolism was involved in the pathological development of endometriosis. Our cross-sectional study included 21 patients with laparoscopically confirmed endometriosis at stage I–II and 20 infertile women who underwent diagnostic laparoscopy combined with hysteroscopy from January 2014 to January 2015. Eutopic endometrium was collected by pipelle endometrial biopsy. Lipid metabolites were quantified by ultra-high performance liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (UHPLC-ESI-HRMS). Lipid profiles of endometriosis patients at early stage (I–II) was characterized by a decreased concentration of phosphatidylcholine (18:1/22:6), (20:1/14:1), (20:3/20:4), and phosphatidylserine (20:3/23:1) and an increased concentration of phosphatidic acid (25:5/22:6) compared with control. The synthesized predicting strategy with 5 biomarkers has a specificity of 75.0% and a sensitivity of 90.5%. Lipid profile of eutopic endometrium in endometriosis was effectively characterized by UHPLC-ESI-HRMS-based metabolomics. Our study demonstrated the alteration of phosphatidic acid, phosphatidylcholine, phosphatidylserine metabolites in endometriosis and provided potential biomarkers for semi-invasive diagnose of endometriosis at early stage.
Acetaminophen (APAP) overdose is the leading cause of drug-induced liver injury, and its prognosis depends on the balance between hepatocyte death and regeneration. Sirtuin 6 (SIRT6) has been reported to protect against oxidative stress-associated DNA damage. But whether SIRT6 regulates APAP-induced hepatotoxicity remains unclear. In this study, the protein expression of nuclear and total SIRT6 was up-regulated in mice liver at 6 and 48 h following APAP treatment, respectively. Sirt6 knockdown in AML12 cells aggravated APAP-induced hepatocyte death and oxidative stress, inhibited cell viability and proliferation, and downregulated CCNA1, CCND1 and CKD4 protein levels. Sirt6 knockdown significantly prevented APAP-induced NRF2 activation, reduced the transcriptional activities of GSTμ and NQO1 and the mRNA levels of Nrf2 , Ho-1 , Gstα and Gstμ . Furthermore, SIRT6 showed potential protein interaction with NRF2 as evidenced by co-immunoprecipitation (Co-IP) assay. Additionally, the protective effect of P53 against APAP-induced hepatocytes injury was Sirt6 -dependent. The Sirt6 mRNA was significantly down-regulated in P53 −/− mice. P53 activated the transcriptional activity of SIRT6 and exerted interaction with SIRT6. Our results demonstrate that SIRT6 protects against APAP hepatotoxicity through alleviating oxidative stress and promoting hepatocyte proliferation, and provide new insights in the function of SIRT6 as a crucial docking molecule linking P53 and NRF2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.