A novel active surface-enhanced Raman scattering (SERS) platform for dynamic on-demand generation of SERS active sites based on optoelectrofluidics is presented in this paper. When a laser source is projected into a sample solution containing metal nanoparticles in an optoelectrofluidic device and an alternating current (ac) electric field is applied, the metal nanoparticles are spontaneously concentrated and assembled within the laser spot, form SERS-active sites, and enhance the Raman signal significantly, allowing dynamic and more sensitive SERS detection. In this simple platform, in which a glass slide-like optoelectrofluidic device is integrated into a conventional SERS detection system, both dynamic concentration of metal nanoparticles and in situ detection of SERS signal are simultaneously possible with only a single laser source. This optoelectrofluidic SERS spectroscopy allows on-demand generation of 'hot spots' at specific regions of interest, and highly sensitive, reliable, and stable SERS measurements of the target molecules in a tiny volume (∼500 nL) of liquid sample without any fluidic components and complicated systems.
We report a novel optoelectrofluidic immunoreaction system based on electroosmotic flow for enhancing antibody-analyte binding efficiency on a surface-based sensing system. Two conventional indium tin oxide glass slides are assembled to provide a reaction chamber for a tiny volume of sample droplet (∼5 μL), in which the top layer is employed as an antibody-immobilized substrate and the bottom layer acts as a photoconductive layer of an optoelectrofluidic device. Under the application of an AC voltage, an illuminated light pattern on the photoconductive layer causes strong counter-rotating vortices to transport analytes from the bulk solution to the vicinity of the assay spot on the glass substrate. This configuration overcomes the slow immunoreaction problem of a diffusion-based sensing system, resulting in the enhancement of binding efficiency via an optoelectrofluidic method. Furthermore, we investigate the effect of optically-induced dynamic AC electroosmotic flow on optoelectrofluidic enhancement for surface-based immunoreaction with a mathematical simulation study and real experiments using immunoglobulin G (IgG) and anti-IgG. As a result, dynamic light patterns provided better immunoreaction efficiency than static light patterns due to effective mass transport of the target analyte, resulting in an achievement of 2.18-fold enhancement under a growing circular light pattern compared to the passive mode.
This paper presents a novel optoelectrofluidic printing system that facilitates not only the optoelectrofluidic patterning of microparticles and mammalian cells but also the harvesting of the patterned microparticles encapsulated within poly(ethylene glycol) dicarylate (PEGDA) hydrogel sheets. Although optoelectrofluidic technology has numerous advantages for programmable and on-demand patterning and the feasibility of manipulating single microparticles, practical applications using existing laboratory infrastructure in biological and clinical research fields have been strictly restricted due to the impossibility of recovering the final patterned product. In order to address these harvesting limitations, PEGDA was employed to utilize optoelectrofluidic printing. The Clausius-Mossotti factor was calculated to investigate the dielectrophoretic mobility of the microparticle and the cell in the PEGDA precursor solution. As a proof of concept, three basic controllabilities of the optoelectrofluidic printing system were characterized: the number of microparticles, the distance between the microparticle columns, and the ratio of two different microparticles. Furthermore, the optoelectrofluidic patterning and printing of human liver carcinoma cells (HepG2) were demonstrated in 5 min with a single-cell level of resolution. The appropriate ranges of frequency were experimentally defined based on the calculated result of the dielectrophoretic mobility of HepG2 cells. Finally, optoelectrofluidically cell-patterned hydrogel sheets were successfully recovered under a highly viable physiological condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.