Recently, control theory including stochastic optimal control and various machine-learning-based artificial intelligence methods have become major tools in the field of financial engineering. In this paper, we briefly review some recent papers utilizing stochastic optimal control theory in the fields of the pair trading for mean-reverting markets and the trend-following strategy, and consider a couple of strategies utilizing both stochastic optimal control theory and machine learning methods to acquire more flexible and accessible tools. Illustrative simulations show that the considered strategies can yield encouraging results when applied to a set of real financial market data.
Recently, the constrained index tracking problem, in which the task of trading a set of stocks is performed so as to closely follow an index value under some constraints, has often been considered as an important application domain for control theory. Because this problem can be conveniently viewed and formulated as an optimal decision-making problem in a highly uncertain and stochastic environment, approaches based on stochastic optimal control methods are particularly pertinent. Since stochastic optimal control problems cannot be solved exactly except in very simple cases, approximations are required in most practical problems to obtain good suboptimal policies. In this paper, we present a procedure for finding a suboptimal solution to the constrained index tracking problem based on approximate dynamic programming. Illustrative simulation results show that this procedure works well when applied to a set of real financial market data.
Abstract:Recently, the optimization of power flows in portable hybrid power-supply systems (HPSSs) has become an important issue with the advent of a variety of mobile systems and hybrid energy technologies. In this paper, a control strategy is considered for dynamically managing power flows in portable HPSSs employing batteries and supercapacitors. Our dynamic power management strategy utilizes the concept of approximate dynamic programming (ADP). ADP methods are important tools in the fields of stochastic control and machine learning, and the utilization of these tools for practical engineering problems is now an active and promising research field. We propose an ADP-based procedure based on optimization under constraints including the iterated Bellman inequalities, which can be solved by convex optimization carried out offline, to find the optimal power management rules for portable HPSSs. The effectiveness of the proposed procedure is tested through dynamic simulations for smartphone workload scenarios, and simulation results show that the proposed strategy can successfully cope with uncertain workload demands.
Recently, reinforcement learning and evolution strategy have become major tools in the field of machine learning, and have shown excellent performance in various engineering problems. In particular, the Natural Actor-Critic (NAC) approach and the Natural Evolution Strategies (NES) have led to considerable interests in the area of natural-gradient-based machine learning methods with many successful applications. In this paper, we apply the NAC and the NES to pathtracking control problems for autonomous vehicles. Simulation results show that these methods can yield better performance compared to the conventional PID controllers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.