We develop a framework for joint constraints on the CO luminosity function based on power spectra (PS) and voxel intensity distributions (VID), and apply this to simulations of COMAP, a CO intensity mapping experiment. This Bayesian framework is based on a Markov chain Monte Carlo (MCMC) sampler coupled to a Gaussian likelihood with a joint PS + VID covariance matrix computed from a large number of fiducial simulations, and re-calibrated with a small number of simulations per MCMC step. The simulations are based on dark matter halos from fast peak patch simulations combined with the L CO (M halo ) model of Li et al. (2016). We find that the relative power to constrain the CO luminosity function depends on the luminosity range of interest. In particular, the VID is more sensitive at large luminosities, while the PS and the VID are both competitive at small and intermediate luminosities. The joint analysis is superior to using either observable separately. When averaging over CO luminosities ranging between L CO = 10 4 − 10 7 L , and over 10 cosmological realizations of COMAP Phase 2, the uncertainties (in dex) are larger by 58% and 30% for the PS and VID, respectively, when compared to the joint analysis (PS + VID). This method is generally applicable to any other random field, with a complicated likelihood, as long a fast simulation procedure is available.
CCAT-prime is a new 6 m crossed Dragone telescope designed to characterize the Cosmic Microwave Background (CMB) polarization and foregrounds, measure the Sunyaev-Zel'dovich effects of galaxy clusters, map the [CII] emission intensity from the Epoch of Reionization (EoR), and monitor accretion luminosity over multi-year timescales of hundreds of protostars in the Milky Way. CCAT-prime will make observations from a 5,600 m altitude site on Cerro Chajnantor in the Atacama Desert of northern Chile. The novel optical design of the telescope combined with high surface accuracy (<10 µm) mirrors and the exceptional atmospheric conditions of the site will enable sensitive broadband, polarimetric, and spectroscopic surveys at sub-mm to mm wavelengths. Prime-Cam, the first light instrument for CCAT-prime, consists of a 1.8 m diameter cryostat that can house seven individual instrument modules. Each instrument module, optimized for a specific science goal, will use state-of-the-art multichroic transition edge sensor (TES) or kinetic inductance detector (KID) arrays operated at ∼100 mK, and Fabry-Perot interferometers (FPI) for the EoR science. Prime-Cam will be commissioned with staged deployments to populate the seven instrument modules. The full instrument will consist of 60,000 polarimetric KIDs at a combination of 220/280/350/410 GHz, 12,000 TES bolometers at 250/350 GHz coupled with FPIs, and 21,000 polarimetric KIDs at 850 GHz. Prime-Cam is currently being developed, and the CCAT-prime telescope is designed and under construction by Vertex Antennentechnik GmbH to achieve first light in 2021. CCAT-prime is also a potential telescope platform for the future CMB Stage-IV observations.
Line-intensity mapping (LIM or IM) is an emerging field of observational work, with strong potential to fit into a larger effort to probe large-scale structure and small-scale astrophysical phenomena using multiple complementary tracers. Taking full advantage of such complementarity means, in part, undertaking line-intensity surveys with galaxy surveys in mind. We consider the potential for detection of a cross-correlation signal between COMAP and blind surveys based on photometric redshifts (as in COSMOS) or based on spectroscopic data (as with the HETDEX survey of Lyman-α emitters). We find that obtaining σ z /(1 + z) 0.003 accuracy in redshifts and 10 −4 sources per Mpc 3 with spectroscopic redshift determination should enable a CO-galaxy cross spectrum detection significance at least twice that of the CO auto spectrum. Either a future targeted spectroscopic survey or a blind survey like HETDEX may be able to meet both of these requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.