The main objective of the present study is to analyze the microstructural modification of the surface hardened by the irradiation of high-energy electron beam in 0.18 pct C and 0.38 pct C plain carbon steels. Steel samples were irradiated using an electron accelerator (1.4 MeV), and the detailed microstructures of the irradiated surface were examined. Upon irradiation, the ferrite-pearlite structure near the sample surface was changed to the dual-phase structure, i.e., ferrite and martensite, and fine particles or needlelike lamellae were observed in the ferrite/martensite interface. In order to investigate these complex microstructures as well as the martensitic transformation mechanism, the simulation test, including thermal cycles of abrupt heating and quenching, was carried out. The test results indicated that the irradiated surface was heated up to about 1100ЊC and then quenched to room temperature, which was enough to obtain the surface hardening through martensitic transformation. Thermal analysis of the irradiated surface was also carried out for systematic understanding of the microstructural modification in terms of the irradiation parameters such as beam travel speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.