Stacked two-dimensional (2D) materials as bulk materials are more practical to be anodes of Li-ion batteries than their monolayers due to the easier operation, while the ion kinetics and capacity are usually deteriorated by the geometric constraint in stacked structures. Herein, we perform first-principles calculations to explore anode performances of the stacked graphdiyne (GDY) where the functional group is intercalated to enlarge the interlayer distance. Compared to the monolayer GDY, which has a diffusion barrier of only 0.315 eV and capacity as high as LiC3, the pristine stacked GDY presents lower capacity (LiC6) and higher diffusion barrier (0.638–0.922 eV) due to the geometric constraint, while after functionalization, the stacked GDY exhibits excellent properties for storing ions similar to the monolayer GDY. A good electronic conductivity is also confirmed by the density of states. Our study indicates that functionalization is an effective pathway to improve the anode performances of stacked 2D materials by optimizing the interlayer structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.