Colorectal cancer (CRC) is a common malignancy globally. The aim of the present study was to explore the role and the working mechanism of circular RNA NADPH oxidase 4 (circNOX4; circBase ID, hsa_circ_0023990) in CRC. Reverse transcription-quantitative (RT-q)PCR was used to examine the expression of circNOX4, NOX4 mRNA and microRNA (miR)-485-5p in CRC tissues and cell lines. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Transwell assays were performed to analyze CRC cell viability and motility. The glycolytic ability of CRC cells was assessed by measuring glucose consumption, lactate production, extracellular acidification and O 2 consumption rates using commercial kits. The starBase database was used to predict the targets of circNOX4 and miR-485-5p, and the interaction was confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. A murine xenograft model was established to verify the role of circNOX4 in CRC in vivo. The results demonstrated that the expression of circNOX4 was upregulated in CRC tissues and cell lines compared with that in adjacent normal tissues and a normal colon epithelial cell line, respectively. The expression of circNOX4 was negatively associated with the prognosis of patients with CRC. CircNOX4 silencing suppressed the proliferation, migration, invasion and glycolysis of CRC cells. miR-485-5p was identified as a target of circNOX4. CircNOX4 promoted CRC progression by sponging miR-485-5p. miR-485-5p was demonstrated to bind to the 3' untranslated region (UTR) of CDC28 protein kinase regulatory subunit 1B (CKS1B). miR-485-5p overexpression-mediated malignant properties of CRC cells were partly reversed by the transfection with the CKS1B overexpression plasmid. CircNOX4 silencing restrained the CRC xenograft growth in vivo. Collectively, the results of the present study demonstrated that circNOX4 may serve an oncogenic role in CRC by promoting the proliferation, migration, invasion and glycolysis of CRC cells via the miR-485-5p/CKS1B axis.
Taking advantage of the high-efficiency photocurrent response of bismuth oxychloride sensitized with gold nanoparticles (BiOClÀ Au) in combination with the antigen-antibody biological recognition reaction, a convenient photoelectrochemical (PEC) immunoassay (model target: prostate-specific antigen; PSA) has been fabricated. In particular, the enhanced photocurrent response could be attributed to the enhanced optical absorption of visible light from surface plasmon resonance (SPR) effect of gold nanoparticles in the hierarchical structure of BiOCl layered. To realize the biological detection process, an immunoreaction was implemented between target PSA and alkaline phosphatase (ALP)-labeled anti-PSA antibodies. With the formation of ternary sandwich immunocomplex, the carried and loaded ALP catalysed the substrate ascorbic acid 2-phosphate (AAP) to generate ascorbic acid for increasing the photocurrent intensity of BiOClÀ Au/FTO. Under optimum reaction time, the photocurrent peak intensity of BiOClÀ Au/FTO increased with the increasing of target PSA concentration in the range of 0.01 ng/mL to 50 ng/mL with a limit of detection (LOD) down to 2.3 pg/mL. In the photocurrent control experiment, the photocurrent of BiOClÀ Au/FTO was not only higher than that of BiOCl/FTO, but also showed greater changes in photocurrent under the same target PSA concentration. Impressively, the proposed split-type PEC immunoassay was applied to detect PSA concentration in human serum samples, giving acceptable and satisfactory accuracy compared with the gold standard PSA ELISA method.
Radiotherapy resistance is a challenge for colorectal cancer (CRC) treatment. Circular RNAs (circRNAs) play vital roles in the occurrence and development of CRC. This study aimed to investigate the role of circ_0005615 in regulating the radiosensitivity of CRC. The levels of circ_0005615, microRNA-665 (miR-665), and notch receptor 1 (NOTCH1) were detected by quantitative real-time PCR or western blot. The radiosensitivity of CRC cells was assessed by colony formation assay. Cell viability, apoptosis, and colony formation were assessed by Cell Counting Kit-8 assay, flow cytometry, and colony formation assay. Cell migration and invasion were confirmed by transwell assay and scratch assay. The binding relationship between miR-665 and circ_0005615 or NOTCH1 was verified by dual-luciferase reporter assay. Xenograft assay was used to test the effect of circ_0005615 on radiosensitivity in vivo. circ_0005615 and NOTCH1 were up-regulated, and miR-665 was down-regulated in CRC tissues and cells. Radiation decreased circ_0005615 and NOTCH1 levels and increased miR-665 level. Knockdown of circ_0005615 enhanced radiosensitivity of CRC cells. Moreover, circ_0005615 sponged miR-665 to regulate the radioresistance of CRC cells. Besides, miR-665 targeted NOTCH1 to mediate the radiosensitivity of CRC cells. Furthermore, circ_0005615 depletion increased CRC radiosensitivity in vivo. circ_0005615 silencing elevated radiosensitivity of CRC by regulating miR-665/NOTCH1 axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.