Changbai Mountain, with intact montane vertical vegetation belts, is located at a sensitive area of global climate change and a central distribution area of Korean pine forest. Broad-leaved Korean pine mixed forest (Pinus koraiensis as an edificator) is the most representative zonal climax vegetation in the humid region of northeastern China; their vertical zonation is the most intact and representative on Changbai Mountain. In this study, we analyzed the composition and diversity of soil fungal communities in the Korean pine forest on Changbai Mountain at elevations ranging from 699 to 1177 m using Illumina High-throughput sequencing. We obtained a total 186,663 optimized sequences, with an average length of 268.81 bp. We found soil fungal diversity index was decreased with increasing elevation from 699 to 937 m and began to rise after reaching 1044 m; the richness and evenness indices were decreased with an increase in elevation. Soil fungal compositions at the phylum, class and genus levels varied significantly at different elevations, but with the same dominant fungi. Beta-diversity analysis indicated that the similarity of fungal communities decreased with an increased vertical distance between the sample plots, showing a distance-decay relationship. Variation partition analysis showed that geographic distance (mainly elevation gradient) only explained 20.53 % of the total variation of fungal community structure, while soil physicochemical factors explained 69.78 %.
The broad‐leaved and Korean pine mixed forest in Changbai Mountain, China is an important component of boreal forest; the area is sensitive to global climate change. To understand spatial distribution patterns of soil bacterial community along elevation, we analyzed the soil bacterial community diversity and composition along an elevational gradient of 699–1177 m in a primitive Korean pine forest in Changbai Mountain using the high‐throughput sequencing. In total, 149,519 optimized sequences were obtained. Bacterial Shannon index increased along elevation from 699 m to 937 m and started to decrease at the elevation of 1,044 m, showing a humpback curve along elevation. Evenness (ACE index) and richness (Chao index) of the soil bacterial community both decreased with elevation (the highest values of 770 and 762 at 699 m and the lowest values of 548 and 539 at 1,177 m, respectively), all the indices are significantly different between elevations. Bacterial composition at phylum and genus levels had some differences between elevations, but the dominant bacterial populations were generally consistent. Beta‐diversity analysis showed a distance‐decay pattern of bacterial community similarity at different samples. Soil physical and chemical properties explained 70.78% of the variation in bacterial community structure (soil pH explained 19.95%), and elevational distance only explained 8.42%. In conclusion, the contemporary environmental disturbances are the critical factors in maintaining the bacterial spatial distribution compared with historical contingencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.