Mechanical properties are crucial for screening orthodontic thermoplastic materials for invisible aligners. However, most of previous studies were carried out within laboratory conditions which limit our understanding of the mechanical behaviors of aligners within oral environment. In this study, we studied the dynamic stress relaxation of thermoplastic materials by combination of Bose ElectroForce and a homemade temperature-controlled water bath. The 3-h stress relaxation curves of five orthodontic thermoplastic materials were measured within 37°C water bath as well as comparatively in ambient atmospheric environment (~20°C). The percentage residual stress at 0, 30, 60, 90, 120, 150, and 180 min was selected for statistical analyses. As expected, the experimental results showed that the residual stress within all five materials decreased with time, and that this process was significantly accelerated in the 37°C water bath (p<0.05). Compared with other materials, Erkodur and Masel exhibited slower relaxing rates in the 37°C water bath (p<0.05).
Porous poly(2-hydroxyethyl methacrylatemethyl methacrylate) particles crosslinked with ethylene glycol dimethacrylate were synthesized by free-radical suspension copolymerization in an aqueous phase initiated by an oil-soluble initiator, 2,2-azobisisobutyronitrile. 1-octanol was used as a pore forming agent (porogen). The porous structures, the particle morphology, and the swelling capacity of the resultant polymer in water at room temperature were studied at different crosslink densities and under various porogen concentrations. The analysis via Scanning Electronic Microscopy (SEM) indicated that permanent pores remained in the dried polymeric particles prepared in the presence of the porogen at certain crosslink densities. According to the studies via the SEM pictures and the pore size distributions, higher porogen concentration promotes the formation of more pores, and higher crosslink density results in narrower pore size distribution. The swelling capacity of the particles in water at room temperature decreases with an increase in the crosslink density, and the existence of the highly porous structures enhances the swelling capacity of the porous particles of poly(2-hydroxyethyl methacrylate-methyl methacrylate).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.