Chrysanthemum (Chrysanthemum morifolium Ramat.) is a seasonal plant with high medicinal and aesthetic value, and drying is an effective practice to enhance its storability after harvesting. The effects of hot air drying (HAD), combined infrared and hot air drying (IR-HAD), and sequential IR-HAD and HAD (IR-HAD + HAD) on the drying behavior, color, shrinkage, aroma profiles, phenolic compounds, and microstructure of chrysanthemum cakes were studied. Results showed that the increasing temperature resulted in a decrease in drying time and an increase in drying rate and moisture diffusivity. The Logarithmic and Page models exhibited superior fit in describing the dehydration process. Among the three drying strategies, IR-HAD was more effective in reducing energy consumption, improving shrinkage, water holding capacity, water binding capacity and cellular microstructure, while IR-HAD + HAD showed better inhibitory effect on color deterioration. Furthermore, gas chromatography–mass spectrometry (GC-MS) analysis revealed that different drying strategies dramatically influenced the aroma profiles in samples, and IR-HAD obtained the highest concentration of volatiles. The results of ultra-performance liquid chromatography (UPLC) indicated that the introduction of infrared radiation contributed to increasing the contents of chlorogenic acid, luteolin, total phenolic and flavonoid. These suggested that IR-HAD was a promising technique for drying medicinal chrysanthemum.
A subset of the compound repository for lead identification at Biogen Idec was characterized for its chemical stability over a 3-year period. Compounds were stored at 4 degrees C as 10 mM DMSO stocks, and a small subset of compounds was stored as lyophilized dry films. Compound integrity of 470 discrete compounds (Compound Set I) and 1917 combinatorial chemistry-derived compounds (Compound Set II) was evaluated by liquid chromatography/mass spectrometry from the time of acquisition into the library collection and after 3 years of storage. Loss of compound integrity over the 3 years of storage was observed across the 2 subsets tested. Of Compound Set I, 63% of samples retained > 80% purity, whereas 57% of samples from Compound Set II had purity greater than 60%. The stability of the lyophilized samples was superior to the samples stored as DMSO solution. Although storage at 4 degrees C as DMSO solution was adequate for the majority of compounds, the authors observed and quantified the level of degradation within the compound collection. Their study provides general insight into compound storage and selection of library subsets for future lead identification activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.