In the past decade, golf has stimulated people's great interest and the number of golf players has increased significantly. Therefore, how to train a golfer to make a perfect swing has attracted extensive research attentions. Among these researches, the most important step is to capture and reconstruct the swing movement in a transportable and non-intrusive way. Restricted by the development of present depth imaging devices, the initial captured swing movement may not be acceptable due to occlusions and mixing up of body parts. In this paper, to restore motion information from self-occlusion and reconstruct 3D golf swing from low resolution data, a Dynamic Bayesian Network (DBN) model based golf swing reconstruction algorithm is proposed to increase the capture accuracy considering the spatial and temporal similarities of swing between different golfers. A Smart Motion Reconstruction system for Golf swing, SMRG, is presented based on the DBN model with a popular depth imaging device, Kinect, as capturing device. Experimental results have proved that the proposed system can achieve comparable reconstruction accuracy to the commercial optical motion caption (OMocap) system and better performance than state of art modification algorithms using depth information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.