It has been found that non-Gaussian operations can be applied to increase and distill entanglement between Gaussian entangled states. We show the successful use of the non-Gaussian operation, in particular, photon subtraction operation, on the continuous-variable measurement-device-independent quantum key distribution (CV-MDI-QKD) protocol. The proposed method can be implemented based on existing technologies. Security analysis shows that the photon subtraction operation can remarkably increase the maximal transmission distance of the CV-MDI-QKD protocol, which precisely make up for the shortcoming of the original CV-MDI-QKD protocol, and 1-photon subtraction operation has the best performance. Moreover, the proposed protocol provides a feasible method for the experimental implementation of the CV-MDI-QKD protocol.
We propose a long-distance continuous-variable measurement-device-independent quantum key distribution (CV-MDI-QKD) protocol with discrete modulation. This kind of discrete-modulated schemes have good compatibility with efficient error correction code, which lead to higher reconciliation efficiency even at low signalto-noise ratio (SNR). Security analysis shows that the proposed protocol is secure against arbitrary collective attacks in the asymptotic limit with proper use of decoy states. And with the using of discrete modulation, the proposed CV-MDI-QKD protocol has simpler implementation and outperform previous protocols in terms of achievable maximal transmission distance, which precisely solve the bottleneck of the original Gaussianmodulated CV-MDI-QKD protocol.
Continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) with Gaussian modulation, or with active state preparation, is immune to all detectionrelated security loopholes. Here, we first propose a scheme where Alice and Bob both passively prepare quantum states using a true thermal source, which is of lower cost and will contribute to the commercialization of CV-MDI QKD. In particular, Alice and Bob first split the output of a thermal source into two correlated modes via a beam splitter at their respective side. Then they measure one of the two modes using two conjugate homodyne detectors and transmit the other attenuated mode to Charlie independently for the Bell state measurement. Moreover, the homodyne detectors, with bright local oscillators, can act as a filter to selectively measure one single mode, which removes the rigid requirement of a single-mode thermal source. This specific conceptual scheme will contribute to the simplification of the experimental implementation of CV-MDI QKD.
Continuous-variable (CV) measurement-device-independent (MDI) quantum key distribution (QKD) is immune to imperfect detection devices, which can eliminate all kinds of attacks on practical detectors. Here we first propose a CV-MDI QKD scheme using unidimensional modulation (UD) in general phase-sensitive channels. The UD CV-MDI QKD protocol is implemented with the Gaussian modulation of a single quadrature of the coherent states prepared by two legitimate senders, aiming to simplify the implementation compared with the standard, symmetrically Gaussian-modulated CV-MDI QKD protocol. Our scheme reduces the complexity of the system since it ignores the requirement in one of the quadrature modulations as well as the corresponding parameter estimations. The security of our proposed scheme is analyzed against collective attacks, and the finite-size analysis under realistic conditions is taken into account. UD CV-MDI QKD shows a comparable performance to that of its symmetrical counterpart, which will facilitate the simplification and practical implementation of the CV-MDI QKD protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.