Self-powered sensors are crucial in the field of wearable devices and the Internet of Things (IoT). In this paper, an organ-like Ti 3 C 2 T x MXene/metal−organic framework-derived copper oxide (CuO) gas sensor was powered by a triboelectric nanogenerator (TENG) based on latex and polytetrafluoroethylene for the detection of ammonia (NH 3 ) at room temperature. The peak-to-peak value of open-circuit voltage and short-circuit current generated by the prepared TENG can reach up to 810 V and 34 μA, respectively. The TENG can support a maximum peak power density of 10.84 W• m −2 and light at least 480 LEDs. Moreover, a flexible TENG under a single-electrode working mode was demonstrated for human movement stimulation, which exhibits great potential in wearable devices. The self-powered NH 3 sensor driven by TENG has an excellent response (V g /V a = 24.8 @ 100 ppm) at room temperature and exhibits a great potential in monitoring pork quality. Ti 3 C 2 T x MXene and CuO were characterized by SEM, TEM, EDS, XRD, and XPS to analyze the properties of the materials. The NH 3 sensing performance of the self-powered sensor based on MXene/CuO was greatly improved, and the mechanism of the enhanced sensing properties was systematically discussed. KEYWORDS: self-powered sensor, triboelectric nanogenerator, Ti 3 C 2 T x MXene, NH 3 sensor, flexible electronics
An ultrasensitive humidity sensor based on molybdenum-disulfide- (MoS2)-modified tin oxide (SnO2) nanocomposite has been demonstrated in this work. The nanostructural, morphological, and compositional properties of an as-prepared MoS2/SnO2 nanocomposite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS), nitrogen sorption analysis, and Raman spectroscopy, which confirmed its successful preparation and rationality. The sensing characteristics of the MoS2/SnO2 hybrid film device against relative humidity (RH) were investigated at room temperature. The RH sensing results revealed an unprecedented response, ultrafast response/recovery behaviors, and outstanding repeatability. To our knowledge, the sensor response yielded in this work was tens of times higher than that of the existing humidity sensors. Moreover, the MoS2/SnO2 hybrid nanocomposite film sensor exhibited great enhancement in humidity sensing performances as compared to the pure MoS2, SnO2, and graphene counterparts. Furthermore, complex impedance spectroscopy and bode plots were employed to understand the underlying sensing mechanisms of the MoS2/SnO2 nanocomposite toward humidity. The synthesized MoS2/SnO2 hybrid composite was proved to be an excellent candidate for constructing ultrahigh-performance humidity sensor toward various applications.
Two-dimensional material has been widely investigated for potential applications in sensor and flexible electronics. In this work, a self-powered flexible humidity sensing device based on poly(vinyl alcohol)/Ti3C2Tx (PVA/MXene) nanofibers film and monolayer molybdenum diselenide (MoSe2) piezoelectric nanogenerator (PENG) was reported for the first time. The monolayer MoSe2-based PENG was fabricated by atmospheric pressure chemical vapor deposition techniques, which can generate a peak output of 35 mV and a power density of 42 mW m−2. The flexible PENG integrated on polyethylene terephthalate (PET) substrate can harvest energy generated by different parts of human body and exhibit great application prospects in wearable devices. The electrospinned PVA/MXene nanofiber-based humidity sensor with flexible PET substrate under the driven of monolayer MoSe2 PENG, shows high response of ∼40, fast response/recovery time of 0.9/6.3 s, low hysteresis of 1.8% and excellent repeatability. The self-powered flexible humidity sensor yields the capability of detecting human skin moisture and ambient humidity. This work provides a pathway to explore the high-performance humidity sensor integrated with PENG for the self-powered flexible electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.