Electrospray was applied to the wet electrostatic precipitator to reduce the water consumption of high-efficiency fine dust collection. The size of droplets must be large to avoid evaporating quickly under high temperature exhaust gas conditions, so a high flowrate condition of several milliliters/min is used, which is relatively high compared with previous applications. Because high flowrate electrospray has a wide spray range and low spray density, image-based droplet size measurement was used. A bias in the probability in the distribution occurs because of the difference in velocity between the droplets. In this study, an approach with object tracking was suggested to eliminate the bias from velocity differences. High flowrate electrospray droplets under various voltage conditions were visualized with a high-speed camera. Based on the image processing, the corrected distribution was characterized, and the effect of the bias was established through comparison with the general distribution. In addition, the spray pattern and the droplet distribution according to the applied voltage of three spraying modes were analyzed. Improved analysis of the actual spray using this approach will guide the selection of operating conditions that optimize dust collection efficiency.
Membrane-based vacuum dehumidification technology is currently being actively studied. In most studies, the performance of the membrane-based systems is evaluated under the assumption that the membrane can achieve ideal separation, which results in ideal coefficient of performance (COP) values. However, the performance factors for membranes vary depending on the experimental conditions and measurement methods. Therefore, relevant values can only be calculated if the data are measured in an environment close to that of the application conditions. The cup measurement method is a simple method to measure the permeability, however, there are limitations regarding adding variables during the experiment. To overcome these limitations, a new experimental device was constructed that combines pressurized cell with the cup method. Using the device, the performance of polyethylene-amide-bonded dense membranes was evaluated under conditions where absolute pressure differentials occurred before and after the membrane, such as in air conditioner dehumidification systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.