Grain development and its evolution in grasses remains poorly understood, despite cereals being our most important source of food. The grain, for which many grass species have been domesticated, is a single-seeded fruit with prominent and persistent endosperm. Brachypodium distachyon, a small wild grass, is being posited as a new model system for the temperate small grain cereals, but little is known about its endosperm development and how this compares with that of the domesticated cereals. A cellular and molecular map of domains within the developing Brachypodium endosperm is constructed. This provides the first detailed description of grain development in Brachypodium for the reference strain, Bd21, that will be useful for future genetic and comparative studies. Development of Brachypodium grains is compared with that of wheat. Notably, the aleurone is not regionally differentiated as in wheat, suggesting that the modified aleurone region may be a feature of only a subset of cereals. Also, the central endosperm and the nucellar epidermis contain unusually prominent cell walls that may act as a storage material. The composition of these cell walls is more closely related to those of barley and oats than to those of wheat. Therefore, although endosperm development is broadly similar to that of temperate small grain cereals, there are significant differences that may reflect its phylogenetic position between the Triticeae and rice.
These results describe the first explicit functional analysis of an AG-clade gene in a basal eudicot; illustrate one of the few examples of the functional consequences of alternative splicing in transcription factors and reveal the importance of alternative transcription, as well as gene duplication, as a driving force in evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.