Bilateral vestibular lesions cause atrophy of the hippocampus in humans and subsequent deficits in spatial memory and the processing of emotional stimuli in both rats and humans. Vestibular lesions also impair hippocampal theta rhythm in rats. The aim of the present study was to investigate whether restoring theta rhythm to the hippocampus of a rat, via stimulation of the medial septum, would repair the deficits caused by vestibular lesions. It was hypothesized that the restoration of theta would repair the deficits and the vestibular rats would exhibit behavior and EEG similar to that of the sham rats. Rats were given either sham surgery or bilateral vestibular deafferentation (BVD) followed in a later operation by electrode implants. Half of the lesioned rats received stimulation. Subjects were tested in open field, elevated T-maze and spatial nonmatching to sample tests. BVD caused a deficit in hippocampal theta rhythm. Stimulation restored theta power at a higher frequency in the vestibular-lesioned rats, however, the stimulation did not repair the cognitive and emotional deficits caused by the lesions. It was concluded that stimulation, at least in the form used here, would not be a viable treatment option for vestibular damaged humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.