Three key regulatory enzymes in ganglioside biosynthesis, sialyltransferase I (ST1), sialyltransferase II (ST2), and N-acetylgalactosaminyltransferase I (GalNAcT), have been expressed as fusion proteins with green, yellow, or red fluorescent protein (GFP, YFP, or RFP) in F-11A cells. F-11A cells are a substrain of murine neuroblastoma F-11 cells that contain only low endogenous ST2 and GalNAcT activity. The subcellular localization of the fusion proteins has been determined by fluorescence microscopy, and the ganglioside composition of these cells was analyzed by high-performance thin-layer chromatography (HPTLC). ST2-GFP (85 kDa) shows a distinct Golgi localization, whereas ST1-YFP (85 kDa) and GalNAcT-RFP (115 kDa) are broadly distributed in ER and Golgi. Untransfected F-11A cells contain mainly GM3, whereas stable transfection with ST2 or GalNAcT results in the predominant expression of b-series complex gangliosides (BCGs). This result indicates that the expression of ST2 enhances the activity of endogenous GalNAcT and vice versa. The specificity of this reaction has been verified by in vitro activity assays with detergent-solubilized enzymes, suggesting the formation of an enzyme complex between ST2 and GalNAcT but not with ST1. Complex formation has also been verified by co-immunoprecipitation of ST2-GFP upon transient transfection with GalNAcT-HA-RFP and by GFP-to-RFP FRET signals that are confined to the Golgi. FRET analysis also suggests that ST2-GFP binds tightly to pyrene-labeled GM3 but not to ST1. We hypothesize that an ST2-GM3 complex is associated with GalNAcT, resulting in the enhanced conversion of GM3 to GD3 and BCGs in the Golgi. Taken together, our results support the concept that ganglioside biosynthesis is tightly regulated by the formation of glycosyltransferase complexes in the ER and/or Golgi.
Gangliosides are ubiquitous components of mammalian cells. Their expression is frequently altered in many tumor types. We previously showed that alteration of the ganglioside composition often resulted in changes in cellular morphology and differentiation of cultured cells. In this study, we targeted sialyltransferase gene expression by the antisense knockdown experiment, and the results showed that inhibition of the expression of gangliosides GD3 and O-acetylated GD3 (OAc-GD3) in the neuroblastoma F-11 cells greatly reduced the tumor growth in nude mice. The sense and antisense vectors containing either a 5' end fragment or the entire sequence of the cDNA coding for GD3-synthase were prepared and used in separate experiments to transfect the F-11 cells which express high levels of gangliosides GD3 and OAc-GD3. Single clones were isolated and expanded. Both the activity of the GD3-synthase and the concentrations of GD3 and OAc-GD3 in the antisense-transfected cells were dramatically decreased as a result of transfection with the antisense expression vectors. Further characterization of the antisense-transfected cells showed reduced rates of cell growth and neurite formation and changes in cellular morphology. When the cells were inoculated in athymic nude mice, the tumor growth rate was remarkably suppressed although the tumor incidence was not affected by the altered ganglioside composition. These results indicate that the tumor-associated ganglioside(s) is(are) involved in regulation of tumor growth, probably through the stimulation of angiogenesis of the tumor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.