[1] In southern and central Alaska the subduction and active volcanism of the Aleutian subduction zone give way to a broad plate boundary zone with mountain building and strike-slip faulting, where the Yakutat terrane joins the subducting Pacific plate. The interplay of these tectonic elements can be best understood by considering the entire region in three dimensions. We image three-dimensional seismic velocity using abundant local earthquakes, supplemented by active source data. Crustal low-velocity correlates with basins. The Denali fault zone is a dominant feature with a change in crustal thickness across the fault. A relatively high-velocity subducted slab and a low-velocity mantle wedge are observed, and high V p /V s beneath the active volcanic systems, which indicates focusing of partial melt. North of Cook Inlet, the subducted Yakutat slab is characterized by a thick low-velocity, high-V p /V s crust. High-velocity material above the Yakutat slab may represent a residual older slab, which inhibits vertical flow of Yakutat subduction fluids. Alternate lateral flow allows Yakutat subduction fluids to contribute to Cook Inlet volcanism and the Wrangell volcanic field. The apparent northeast edge of the subducted Yakutat slab is southwest of the Wrangell volcanics, which have adakitic composition consistent with melting of this Yakutat slab edge. In the mantle, the Yakutat slab is subducting with the Pacific plate, while at shallower depths the Yakutat slab overthrusts the shallow Pacific plate along the Transition fault. This region of crustal doubling within the shallow slab is associated with extremely strong plate coupling and the primary asperity of the M w 9.2 great 1964 earthquake.
We present a new three-dimensional (3D) compressional wavespeed (V p) model for the Parkfield region, taking advantage of the recent seismicity associated with the 2003 San Simeon and 2004 Parkfield earthquake sequences to provide increased model resolution compared to the work of Eberhart-Phillips and Michael (1993) (EPM93). Taking the EPM93 3D model as our starting model, we invert the arrival-time data from about 2100 earthquakes and 250 shots recorded on both permanent network and temporary stations in a region 130 km northeast-southwest by 120 km northwest-southeast. We include catalog picks and cross-correlation and catalog differential times in the inversion, using the double-difference tomography method of Zhang and Thurber (2003). The principal V p features reported by EPM93 and Michelini and McEvilly (1991) are recovered, but with locally improved resolution along the San Andreas Fault (SAF) and near the active-source profiles. We image the previously identified strong wavespeed contrast (faster on the southwest side) across most of the length of the SAF, and we also improve the image of a high V p body on the northeast side of the fault reported by EPM93. This narrow body is at about 5-to 12-km depth and extends approximately from the locked section of the SAF to the town of Parkfield. The footwall of the thrust fault responsible for the 1983 Coalinga earthquake is imaged as a northeast-dipping high wavespeed body. In between, relatively low wavespeeds (Ͻ5 km/sec) extend to as much as 10-km depth. We use this model to derive absolute locations for about 16,000 earthquakes from 1966 to 2005 and high-precision double-difference locations for 9,000 earthquakes from 1984 to 2005, and also to determine focal mechanisms for 446 earthquakes. These earthquake locations and mechanisms show that the seismogenic fault is a simple planar structure. The aftershock sequence of the 2004 mainshock concentrates into the same structures defined by the pre-2004 seismicity, confirming earlier observations (Waldhauser et al., 2004) that the seismicity pattern at Parkfield is long lived and persists through multiple cycles of mainshocks.
S U M M A R YRecent dense deployments of portable digital seismographs have provided excellent control on earthquakes beneath the central North Island of New Zealand. Here we use a subset of the best-recorded earthquakes in an inversion for the 3-D Vp and Vp/Vs structure. The data set includes 39 123 P observations and 18 331 S observations from 1239 earthquakes and nine explosions. The subducted plate is imaged as a high Vp, low Vp/Vs feature. Vp within the mantle of the subducted slab is almost always >8.5 km s −1 , which requires the ca. 120 Myr slab to be unusually cold. The low Vp/Vs within the subducted plate closely parallels the lower plane of the dipping seismic zone. It most likely indicates fluid resulting from dehydration of serpentine in the slab mantle, and the earthquakes themselves are likely to be promoted by dehydration embrittlement. We identify a region with Vp < 8.0 km s −1 which coincides with the upper plane of the dipping seismic zone and extends to ca. 65 km depth with the subducted Hikurangi Plateau, which is about 17 km thick prior to subduction. The mantle wedge is generally imaged as a low Vp, high Vp/Vs feature. However, there are significant changes evident in the wedge along the strike of the subduction zone. The region where Vp is lowest (7.4 km s −1 ) and Vp/Vs is highest (1.87) occurs at 65 km depth, immediately west of the Taupo caldera. This region is best interpreted as a significant volume of partial melt, produced by the reaction of fluid released by dehydration of the subducted plate with the convecting mantle wedge. The region with lowest Vp, while paralleling the underlying dipping seismic zone, is located about 30 km from the upper surface of the zone. Material with Vp > 8.0 km s −1 directly above the dipping seismic zone can be interpreted as sinking, entrained with the motion of the subducted slab and forming a viscous blanket that insulates the slab from the high-temperature mantle wedge. Material in the overlying low Vp region can be interpreted as rising within a return flow within the wedge. The volcanic front appears to be controlled by where this dipping low Vp region meets the base of the crust. The thickness of the backarc crust also shows significant variation along strike. In the central Taupo Volcanic Zone (TVZ) the crust is ca. 35 km thick, while southwest of Mt Ruapehu the crust thickens by ca. 10 km. There is no significant low Vp zone in the mantle wedge in this southwestern region, suggesting that this thicker crust has choked off mantle return flow. The seismic tomography results, when combined with constraints on mantle flow from previous shear-wave splitting results, provide a plausible model for both the distribution of volcanism in the central North Island, and the exceptional magmatic productivity of the central TVZ.
The Landers earthquake, which had a moment magnitude (M(w)) of 7.3, was the largest earthquake to strike the contiguous United States in 40 years. This earthquake resulted from the rupture of five major and many minor right-lateral faults near the southern end of the eastern California shear zone, just north of the San Andreas fault. Its M(w) 6.1 preshock and M(w) 6.2 aftershock had their own aftershocks and foreshocks. Surficial geological observations are consistent with local and far-field seismologic observations of the earthquake. Large surficial offsets (as great as 6 meters) and a relatively short rupture length (85 kilometers) are consistent with seismological calculations of a high stress drop (200 bars), which is in turn consistent with an apparently long recurrence interval for these faults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.