[1] Rust and bunt spores that act as ice nuclei (IN) could change the formation characteristics and properties of ice-containing clouds. In addition, ice nucleation on rust and bunt spores, followed by precipitation, may be an important removal mechanism of these spores from the atmosphere. Using an optical microscope, we studied the ice nucleation properties of spores from four rust species (Puccinia graminis, Puccinia triticina, Puccinia allii, and Endocronartium harknesssii) and two bunt species (Tilletia laevis and Tilletia tritici) immersed in water droplets. We show that the cumulative number of IN per spore is 5 × 10 À3 , 0.01, and 0.10 at temperatures of roughly À24°C, À25°C, and À28°C, respectively. Using a particle dispersion model, we also investigated if these rust and bunt spores will reach high altitudes in the atmosphere where they can cause heterogeneous freezing. Simulations suggest that after 3 days and during periods of high spore production, between 6 and 9% of 15 μm particles released over agricultural regions in Kansas (U.S.), North Dakota (U.S.), Saskatchewan (Canada), and Manitoba (Canada) can reach at least 6 km in altitude. An altitude of 6 km corresponds to a temperature of roughly À25°C for the sites chosen. The combined results suggest that (a) ice nucleation by these fungal spores could play a role in the removal of these particles from the atmosphere and (b) ice nucleation by these rust and bunt spores are unlikely to compete with mineral dust on a global and annual scale at an altitude of approximately 6 km.
Abstract. We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are widely distributed over the globe. Ustilaginomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes because they are thought to be abundant in the atmosphere and because there is very little information on the ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated contained some fraction of spores that serve as ice nuclei at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between −19 °C and −29 °C, 0.01 between −25.5 °C and −31 °C, and 0.1 between −26 °C and −31.5 °C. On average, the order of ice nucleating ability for these spores is Ustilaginomycetes > Agaricomycetes ≃ Eurotiomycetes. The freezing data also suggests that, at temperatures ranging from −20 °C to −25 °C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98% of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota), there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry–climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the transport and global distributions of these spores in the atmosphere. Simulations suggest that inclusion of ice nucleation scavenging of these fungal spores in mixed-phase clouds can decrease the annual mean concentrations of fungal spores in near-surface air over the oceans and polar regions, and decrease annual mean concentrations in the upper troposphere.
Abstract. The nocturnal nitrogen oxides, which include the nitrate radical (NO3), dinitrogen pentoxide (N2O5), and its uptake product on chloride containing aerosol, nitryl chloride (ClNO2), can have profound impacts on the lifetime of NOx (= NO + NO2), radical budgets, and next-day photochemical ozone (O3) production, yet their abundances and chemistry are only sparsely constrained by ambient air measurements. Here, we present a measurement data set collected at a routine monitoring site near the Abbotsford International Airport (YXX) located approximately 30 km from the Pacific Ocean in the Lower Fraser Valley (LFV) on the west coast of British Columbia. Measurements were made from 20 July to 4 August 2012 and included mixing ratios of ClNO2, N2O5, NO, NO2, total odd nitrogen (NOy), O3, photolysis frequencies, and size distribution and composition of non-refractory submicron aerosol (PM1). At night, O3 was rapidly and often completely removed by dry deposition and by titration with NO of anthropogenic origin and unsaturated biogenic hydrocarbons in a shallow nocturnal inversion surface layer. The low nocturnal O3 mixing ratios and presence of strong chemical sinks for NO3 limited the extent of nocturnal nitrogen oxide chemistry at ground level. Consequently, mixing ratios of N2O5 and ClNO2 were low (< 30 and < 100 parts-per-trillion by volume (pptv) and median nocturnal peak values of 7.8 and 7.9 pptv, respectively). Mixing ratios of ClNO2 frequently peaked 1–2 h after sunrise rationalized by more efficient formation of ClNO2 in the nocturnal residual layer aloft than at the surface and the breakup of the nocturnal boundary layer structure in the morning. When quantifiable, production of ClNO2 from N2O5 was efficient and likely occurred predominantly on unquantified supermicron-sized or refractory sea-salt-derived aerosol. After sunrise, production of Cl radicals from photolysis of ClNO2 was negligible compared to production of OH from the reaction of O(1D) + H2O except for a short period after sunrise.
Abstract. Ice nucleation on fungal spores may affect the frequency and properties of ice and mixed-phase clouds. We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are cosmopolitan. Ustilaginomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes since they are thought to be abundant in the atmosphere and because there is very little information on the ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated were found to cause freezing of water droplets at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between −19 °C and −29 °C, 0.01 between −25.5 °C and −31 °C, and 0.1 between −26 °C and −36 °C. On average, the order of ice nucleating ability for these spores is Ustilaginomycetes > Agaricomycetes &simeq; Eurotiomycetes. We show that at temperatures below −20 °C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98% of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota) there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry–climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the atmospheric transport and global distributions of these spores in the atmosphere. Simulations show that inclusion of ice nucleation scavenging of these fungal spores in mixed-phase clouds can decrease the annual mean concentrations of fungal spores in near-surface air over the oceans and polar regions and decrease annual mean mixing ratios in the upper troposphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.