Vascular endothelial growth factor (VEGF) plays a critical role during normal embryonic angiogenesis and also in the pathological angiogenesis that occurs in a number of diseases, including cancer. Initial attempts to block VEGF by using a humanized monoclonal antibody are beginning to show promise in human cancer patients, underscoring the importance of optimizing VEGF blockade. Previous studies have found that one of the most effective ways to block the VEGF-signaling pathway is to prevent VEGF from binding to its normal receptors by administering decoy-soluble receptors. The highest-affinity VEGF blocker described to date is a soluble decoy receptor created by fusing the first three Ig domains of VEGF receptor 1 to an Ig constant region; however, this fusion protein has very poor in vivo pharmacokinetic properties. By determining the requirements to maintain high affinity while extending in vivo half life, we were able to engineer a very potent high-affinity VEGF blocker that has markedly enhanced pharmacokinetic properties. This VEGF-Trap effectively suppresses tumor growth and vascularization in vivo, resulting in stunted and almost completely avascular tumors. VEGF-Trap-mediated blockade may be superior to that achieved by other agents, such as monoclonal antibodies targeted against the VEGF receptor.
Gene therapy approaches involving vascular endothelial growth factor (VEGF) to promote therapeutic angiogenesis are under consideration for conditions ranging from ischemic heart disease to nonhealing skin ulcers. Here we make the surprising observation that the transgenic delivery of VEGF to the skin results in a profound inflammatory skin condition with many of the cellular and molecular features of psoriasis, including the characteristic vascular changes, epidermal al-
Vascular endothelial growth factor (VEGF) plays a central role in the development of retinal neovascularization and diabetic macular edema. There is also evidence suggesting that VEGF is an important stimulator for choroidal neovascularization. In this study, we investigated the effect of a specific inhibitor of VEGF, VEGF-TRAP(R1R2), in models for these disease processes. VEGF-TRAP(R1R2) is a fusion protein, which combines ligand binding elements taken from the extracellular domains of VEGF receptors 1 and 2 fused to the Fc portion of IgG1. Subcutaneous injections or a single intravitreous injection of VEGF-TRAP(R1R2) strongly suppressed choroidal neovascularization in mice with laser-induced rupture of Bruch's membrane. Subcutaneous injection of VEGF-TRAP(R1R2) also significantly inhibited subretinal neovascularization in transgenic mice that express VEGF in photoreceptors. In two models of VEGF-induced breakdown of the blood-retinal barrier (BRB), one in which recombinant VEGF is injected into the vitreous cavity and one in which VEGF expression is induced in the retina in transgenic mice, VEGF-TRAP(R1R2) significantly reduced breakdown of the BRB. These data confirm that VEGF is a critical stimulus for the development of choroidal neovascularization and indicate that VEGF-TRAP(R1R2) may provide a new agent for consideration for treatment of patients with choroidal neovascularization and diabetic macular edema.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.