One of the most striking examples of small RNA regulation of gene expression is the process of RNA editing in the mitochondria of trypanosomes. In these parasites, RNA editing involves extensive uridylate insertions and deletions within most of the mitochondrial messenger RNAs (mRNAs). Over 1200 small guide RNAs (gRNAs) are predicted to be responsible for directing the sequence changes that create start and stop codons, correct frameshifts and for many of the mRNAs generate most of the open reading frame. In addition, alternative editing creates the opportunity for unprecedented protein diversity. In Trypanosoma brucei, the vast majority of gRNAs are transcribed from minicircles, which are approximately one kilobase in size, and encode between three and four gRNAs. The large number (5000–10 000) and their concatenated structure make them difficult to sequence. To identify the complete set of gRNAs necessary for mRNA editing in T. brucei, we used Illumina deep sequencing of purified gRNAs from the procyclic stage. We report a near complete set of gRNAs needed to direct the editing of the mRNAs.
RNA editing of several mitochondrial transcripts in Trypanosoma brucei is developmentally regulated. The cytochrome b and cytochrome oxidase II mRNAs are edited in procyclic-form parasites but are primarily unedited in bloodstream forms. The latter forms lack the mitochondrial respiratory system present in procyclic forms. Editing of the NADH dehydrogenase 7 (ND7) and ND8 transcripts is also developmentally regulated but occurs preferentially in bloodstream forms. Other transcripts, cytochrome oxidase III and ATPase 6, are edited in both life forms. We have identified many minicircle-encoded guide RNAs (gRNAs) for ATPase 6, ND7, and ND8. The characteristics of these gRNAs reveal how extensively edited RNA can be edited in the 3'-to-5' direction. Northern (RNA) blot and primer extension analyses indicate that gRNAs for transcripts whose editing is developmentally regulated are present in both procyclic and bloodstream form parasites. These results suggest that the developmental regulation of editing in these transcripts is not controlled by the presence or absence of gRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.