Apoptosis in vivo is followed almost inevitably by rapid uptake into adjacent phagocytic cells, a critical process in tissue remodeling, regulation of the immune response, or resolution of inflammation. Phagocytosis of apoptotic cells by macrophages has been suggested to be a quiet process that does not lead to production of inflammatory mediators. Here we show that phagocytosis of apoptotic neutrophils (in contrast to immunoglobulin G-opsonized apoptotic cells) actively inhibited the production of interleukin (IL)-1beta, IL-8, IL-10, granulocyte macrophage colony-stimulating factor, and tumor necrosis factor-alpha, as well as leukotriene C4 and thromboxane B2, by human monocyte-derived macrophages. In contrast, production of transforming growth factor (TGF)-beta1, prostaglandin E2, and platelet-activating factor (PAF) was increased. The latter appeared to be involved in the inhibition of proinflammatory cytokine production because addition of exogenous TGF-beta1, prostaglandin E2, or PAF resulted in inhibition of lipopolysaccharide-stimulated cytokine production. Furthermore, anti-TGF-beta antibody, indomethacin, or PAF receptor antagonists restored cytokine production in lipopolysaccharide-stimulated macrophages that had phagocytosed apoptotic cells. These results suggest that binding and/or phagocytosis of apoptotic cells induces active antiinflammatory or suppressive properties in human macrophages. Therefore, it is likely that resolution of inflammation depends not only on the removal of apoptotic cells but on active suppression of inflammatory mediator production. Disorders in either could result in chronic inflammatory diseases.
Apoptotic-cell removal is critical for development, tissue homeostasis, and resolution of inflammation. Although many candidate systems exist, only phosphatidylserine has been identified as a general recognition ligand on apoptotic cells. We demonstrate here that calreticulin acts as a second general recognition ligand by binding and activating LDL-receptor-related protein (LRP) on the engulfing cell. Since surface calreticulin is also found on viable cells, a mechanism preventing inadvertent uptake was sought. Disruption of interactions between CD47 (integrin-associated protein) on the target cell and SIRPalpha (SHPS-1), a heavily glycosylated transmembrane protein on the engulfing cell, permitted uptake of viable cells in a calreticulin/LRP-dependent manner. On apoptotic cells, CD47 was altered and/or lost and no longer activated SIRPalpha. These changes on the apoptotic cell create an environment where "don't eat me" signals are rendered inactive and "eat me" signals, including calreticulin and phosphatidylserine, congregate together and signal for removal.
cytosis of cellular corpses. During apoptosis, the asymmetry of plasma membrane phospholipids is lost, which exposes phosphatidylserine externally. The phagocytosis of apoptotic cells can be inhibited stereospecifically by phosphatidylserine and its structural analogues, but not by other anionic phospholipids, suggesting that phosphatidylserine is specifically recognized. Using phage display, we have cloned a gene that appears to recognize phosphatidylserine on apoptotic cells. Here we show that this gene, when transfected into B and T lymphocytes, enables them to recognize and engulf apoptotic cells in a phosphatidylserine-specific manner. Flow cytometric analysis using a monoclonal antibody suggested that the protein is expressed on the surface of macrophages, fibroblasts and epithelial cells; this antibody, like phosphatidylserine liposomes, inhibited the phagocytosis of apoptotic cells and, in macrophages, induced an anti-inflammatory state. This candidate phosphatidylserine receptor is highly homologous to genes of unknown function in Caenorhabditis elegans and Drosophila melanogaster, suggesting that phosphatidylserine recognition on apoptotic cells during their removal by phagocytes is highly conserved throughout phylogeny.
Removal of apoptotic cells is essential for maintenance of tissue homeostasis, organogenesis, remodeling, development, and maintenance of the immune system, protection against neoplasia, and resolution of inflammation. The mechanisms of this removal involve recognition of the apoptotic cell surface and initiation of phagocytic uptake into a variety of cell types. Here we provide evidence that C1q and mannose binding lectin (MBL), a member of the collectin family of proteins, bind to apoptotic cells and stimulate ingestion of these by ligation on the phagocyte surface of the multifunctional protein, calreticulin (also known as the cC1qR), which in turn is bound to the endocytic receptor protein CD91, also known as the α-2-macroglobulin receptor. Use of these proteins provides another example of apoptotic cell clearance mediated by pattern recognition molecules of the innate immune system. Ingestion of the apoptotic cells through calreticulin/CD91 stimulation is further shown to involve the process of macropinocytosis, implicated as a primitive and relatively nonselective uptake mechanism for C1q- and MBL-enhanced engulfment of whole, intact apoptotic cells, as well as cell debris and foreign organisms to which these molecules may bind.
The current paradigm in macrophage biology is that some tissues mainly contain macrophages from embryonic origin, such as microglia in the brain, whereas other tissues contain postnatal-derived macrophages, such as the gut. However, in the lung and in other organs, such as the skin, there are both embryonic and postnatal-derived macrophages. In this study, we demonstrate in the steady-state lung that the mononuclear phagocyte system is comprised of three newly identified interstitial macrophages (IMs), alveolar macrophages, dendritic cells, and few extravascular monocytes. We focused on similarities and differences between the three IM subtypes, specifically, their phenotype, location, transcriptional signature, phagocytic capacity, turnover, and lack of survival dependency on fractalkine receptor, CXCR1. Pulmonary IMs were located in the bronchial interstitium but not the alveolar interstitium. At the transcriptional level, all three IMs displayed a macrophage signature and phenotype. All IMs expressed MER proto-oncogene, tyrosine kinase, CD64, CD11b, and CXCR1, and were further distinguished by differences in cell surface protein expression of CD206, Lyve-1, CD11c, CCR2, and MHC class II, along with the absence of Ly6C, Ly6G, and Siglec F. Most intriguingly, in addition to the lung, similar phenotypic populations of IMs were observed in other nonlymphoid organs, perhaps highlighting conserved functions throughout the body. These findings promote future research to track four distinct pulmonary macrophages and decipher the division of labor that exists between them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.