Biologic scaffolds composed of extracellular matrix (ECM) are utilized in numerous regenerative medicine applications to facilitate the constructive remodeling of tissues and organs. The mechanisms by which the host remodeling response occurs are not fully understood, but recent studies suggest that both constituent growth factors and biologically active degradation products derived from ECM play important roles. The objective of the present study was to determine if degradation of ECM scaffold materials in vitro by methods that are biochemically and physiologically relevant can yield products that possess chemotactic and/or mitogenic activities for fully differentiated mammalian endothelial cells and undifferentiated multipotential progenitor cells. ECM harvested from porcine urinary bladder was degraded enzymatically with pepsin/hydrochloric acid or papain. The ECM degradation products were tested for chemoattractant properties utilizing either 48-well chemotaxis filter migration microchambers or fluorescence-based filter migration assays, and were tested for mitogenic properties in cell proliferation assays. Results showed that ECM degradation products possessed chemotactic and mitogenic activities for multipotential progenitor cells and that the same degradation products inhibited both chemotaxis and proliferation of differentiated endothelial cells. These findings support the concept that degradation products of ECM bioscaffolds are important modulators of the recruitment and proliferation of appropriate cell types during the process of ECM scaffold remodeling.
Purpose: ERBB3 is overexpressed in a broad spectrum of human cancers, and its aberrant activation is associated with tumor pathogenesis and therapeutic resistance to various anticancer agents. Neuregulin 1 (NRG1) is the predominant ligand for ERBB3 and can promote the heterodimerization of ERBB3 with other ERBB family members, resulting in activation of multiple intracellular signaling pathways. AV-203 is a humanized IgG1/k ERBB3 inhibitory antibody that completed a first-in-human phase I clinical trial in patients with advanced solid tumors. The purpose of this preclinical study was to identify potential biomarker(s) that may predict response to AV-203 treatment in the clinic.Experimental Design: We conducted in vivo efficacy studies using a broad panel of xenograft models representing a wide variety of human cancers. To identify biomarkers that can predict response to AV-203, the relationship between tumor growth inhibition (TGI) by AV-203 and the expression levels of ERBB3 and NRG1 were evaluated in these tumor models.Results: A significant correlation was observed between the levels of NRG1 expression and TGI by AV-203. In contrast, TGI was not correlated with ERBB3 expression. The correlation between the levels of NRG1 expression in tumors and their response to ERBB3 inhibition by AV-203 was further validated using patient-derived tumor explant models.Conclusions: NRG1 is a promising biomarker that can predict response to ERBB3 inhibition by AV-203 in preclinical human cancer models. NRG1 warrants further clinical evaluation and validation as a potential predictive biomarker of response to AV-203.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.