The need for multidisciplinary research to address today's complex health and environmental challenges has never been greater. The One Health (OH) approach to research ensures that human, animal, and environmental health questions are evaluated in an integrated and holistic manner to provide a more comprehensive understanding of the problem and potential solutions than would be possible with siloed approaches. However, the OH approach is complex, and there is limited guidance available for investigators regarding the practical design and implementation of OH research. In this paper we provide a framework to guide researchers through conceptualizing and planning an OH study. We discuss key steps in designing an OH study, including conceptualization of hypotheses and study aims, identification of collaborators for a multi-disciplinary research team, study design options, data sources and collection methods, and analytical methods. We illustrate these concepts through the presentation of a case study of health impacts associated with land application of biosolids. Finally, we discuss opportunities for applying an OH approach to identify solutions to current global health issues, and the need for cross-disciplinary funding sources to foster an OH approach to research.
The recent emergence of an apparently new form of chronic kidney disease of unknown aetiology (CKDu) has become a serious public health crisis in Sri Lanka. CKDu is slowly progressive, irreversible, and asymptomatic until late stages, and is not attributable to hypertension, diabetes, or other known aetiologies. In response to the scope and severity of the emerging CKDu health crisis, the Sri Lanka Ministry of Health and the World Health Organization initiated a collaborative research project from 2009 through 2012 to investigate CKDu prevalence and aetiology. The objective of this paper is to discuss the recently published findings of this investigation and present additional considerations and recommendations that may enhance subsequent investigations designed to identify and understand CKDu risk factors in Sri Lanka or other countries.
The emergence of a new form of chronic kidney disease of unknown etiology (CKDu) in Sri Lanka's North Central Province (NCP) has become a catastrophic health crisis. CKDu is characterized as slowly progressing, irreversible, and asymptomatic until late stages and, importantly, not attributed to diabetes, hypertension, or other known risk factors. It is postulated that the etiology of CKDu is multifactorial, involving genetic predisposition, nutritional and dehydration status, exposure to one or more environmental nephrotoxins, and lifestyle factors. The objective of this limited geochemical laboratory analysis was to determine the concentration of a suite of heavy metals and trace element nutrients in biological samples (human whole blood and hair) and environmental samples (drinking water, rice, soil, and freshwater fish) collected from two towns within the endemic NCP region in 2012 and 2013. This broad panel, metallomics/mineralomics approach was used to shed light on potential geochemical risk factors associated with CKDu. Based on prior literature documentation of potential nephrotoxins that may play a role in the genesis and progression of CKDu, heavy metals and fluoride were selected for analysis. The geochemical concentrations in biological and environmental media areas were quantified. Basic statistical measurements were subsequently used to compare media against applicable benchmark values, such as US soil screening levels. Cadmium, lead, and mercury were detected at concentrations exceeding US reference values in many of the biological samples, suggesting that study participants are subjected to chronic, low-level exposure to these elements. Within the limited number of environmental media samples, arsenic was determined to exceed initial risk screening and background concentration values in soil, while data collected from drinking water samples reflected the unique hydrogeochemistry of the region, including the prevalence of hard or very hard water, and fluoride, iron, manganese, sodium, and lead exceeding applicable drinking water standards in some instances. Current literature suggests that the etiology of CKDu is likely multifactorial, with no single biological or hydrogeochemical parameter directly related to disease genesis and progression. This preliminary screening identified that specific constituents may be present above levels of concern, but does not compare results against specific kidney toxicity values or cumulative risk related to a multifactorial disease process. The data collected from this limited investigation are intended to be used in the subsequent study design of a comprehensive and multifactorial etiological study of CKDu risk factors that includes sample collection, individual surveys, and laboratory analyses to more fully evaluate the potential environmental, behavioral, genetic, and lifestyle risk factors associated with CKDu.
Assessing the health and environmental risks of engineered nanomaterials (ENMs) continues to be a challenging endeavor. Due to extensive challenges related to applying traditional risk assessment frameworks to ENMs, decision making regarding the use of ENMs in products and applications may need to rely on structured decision support tools such as risk ranking approaches. This study examines the use of one risk ranking tool that incorporates both quantitative and qualitative information regarding the potential human health risks of ENMs, focused primarily on worker and soldier health. Using a case study involving Army materiel (i.e., equipment), a relative risk ranking algorithm is proposed that accounts for not only the physicochemical characteristics of the ENMs, but also the characteristics of the Army materiel. In this way, the resulting risk potential for soldiers and workers is not solely based on the inherent characteristics of the ENMs but is also influenced within the context of the technology being developed. Among other important findings, the results from applying this risk ranking algorithm in this case study suggest that inhalation from accidental exposures to carbon nanotubes and copper flakes incorporated into energy and obscurant materiel by Army workers rank highest relative to the other items evaluated in this baseline assessment. As the presence of data gaps was one of the greatest challenges to applying this risk ranking algorithm, future applications may benefit from reliance on a continually revised database that may be updated in real time and possibly synced with publically available databases in order to use the most current and comprehensive set(s) of data available.
Reuse of oilfield‐produced water (OPW) for crop irrigation has the potential to make a critical difference in the water budgets of highly productive but drought‐stressed agricultural watersheds. This is the first peer‐reviewed study to evaluate how trace metals in OPW used to irrigate California crops may affect human health. We modeled and quantified risks associated with consuming foods irrigated with OPW using available concentration data. The probabilistic risk assessment simulated OPW metal concentrations, crop uptake, human exposures, and potential noncancer and carcinogenic health effects. Overall, our findings indicate that there is a low risk of ingesting toxic amounts of metals from the consumption of tree nuts, citrus, grapes, and root vegetables irrigated with low‐saline OPW. Results show increased arsenic cancer risk (at 10−6) for adult vegetarians, assuming higher consumption of multiple foods irrigated with OPW that contain high arsenic concentrations. All other cancer risks are below levels of concern and all noncancer hazards are far below levels of concern. Arsenic risk concerns could be mitigated by practices such as blending high‐arsenic OPW. Future risk assessment research should model the risks of organic compounds in OPW, as our study focused on inorganic compounds. Nevertheless, our findings indicate that low‐saline OPW may provide a safe and sustainable alternative irrigation water source if water quality is adequately monitored and blended as needed prior to irrigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.