Stroke is a leading cause of death and disability. The ability to quickly identify the presence of acute infarct and quantify the volume on magnetic resonance imaging (MRI) has important treatment implications. We developed a machine learning model that used the apparent diffusion coefficient and diffusion weighted imaging series. It was trained on 6,657 MRI studies from Massachusetts General Hospital (MGH; Boston, USA). All studies were labelled positive or negative for infarct (classification annotation) with 377 having the region of interest outlined (segmentation annotation). The different annotation types facilitated training on more studies while not requiring the extensive time to manually segment every study. We initially validated the model on studies sequestered from the training set. We then tested the model on studies from three clinical scenarios: consecutive stroke team activations for 6-months at MGH, consecutive stroke team activations for 6-months at a hospital that did not provide training data (Brigham and Women’s Hospital [BWH]; Boston, USA), and an international site (Diagnósticos da América SA [DASA]; Brazil). The model results were compared to radiologist ground truth interpretations. The model performed better when trained on classification and segmentation annotations (area under the receiver operating curve [AUROC] 0.995 [95% CI 0.992–0.998] and median Dice coefficient for segmentation overlap of 0.797 [IQR 0.642–0.861]) compared to segmentation annotations alone (AUROC 0.982 [95% CI 0.972–0.990] and Dice coefficient 0.776 [IQR 0.584–0.857]). The model accurately identified infarcts for MGH stroke team activations (AUROC 0.964 [95% CI 0.943–0.982], 381 studies), BWH stroke team activations (AUROC 0.981 [95% CI 0.966–0.993], 247 studies), and at DASA (AUROC 0.998 [95% CI 0.993–1.000], 171 studies). The model accurately segmented infarcts with Pearson correlation comparing model output and ground truth volumes between 0.968 and 0.986 for the three scenarios. Acute infarct can be accurately detected and segmented on MRI in real-world clinical scenarios using a machine learning model.
Non-contrast head CT (NCCT) is extremely insensitive for early (< 3–6 h) acute infarct identification. We developed a deep learning model that detects and delineates suspected early acute infarcts on NCCT, using diffusion MRI as ground truth (3566 NCCT/MRI training patient pairs). The model substantially outperformed 3 expert neuroradiologists on a test set of 150 CT scans of patients who were potential candidates for thrombectomy (60 stroke-negative, 90 stroke-positive middle cerebral artery territory only infarcts), with sensitivity 96% (specificity 72%) for the model versus 61–66% (specificity 90–92%) for the experts; model infarct volume estimates also strongly correlated with those of diffusion MRI (r2 > 0.98). When this 150 CT test set was expanded to include a total of 364 CT scans with a more heterogeneous distribution of infarct locations (94 stroke-negative, 270 stroke-positive mixed territory infarcts), model sensitivity was 97%, specificity 99%, for detection of infarcts larger than the 70 mL volume threshold used for patient selection in several major randomized controlled trials of thrombectomy treatment.
Non-contrast head CT (NCCT) is extremely insensitive for early (< 3-6hrs) acute infarct identification. We developed a deep learning model that detects and delineates early acute infarcts on NCCT, using diffusion MRI as ground truth (3,566 NCCT/MRI training pairs). The model substantially outperformed 3 expert neuroradiologists on a test set of 150 CT scans (sensitivity 96% model versus 61–66% experts); infarct volume estimates strongly correlated with those of diffusion MRI (r2 > 0.98).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.