Fault transmissibility and leakage have significant implications for field development during both primary and post-primary recovery. Whether the fault is sealing or not can directly determine the sweep efficiency and the fate of injected fluids. In addition, fault transmissivity affect the accuracy of in-place volume calculations from material balance techniques. In this paper dynamic data was used to determine transmissibility and leakage of the faults via Capacitance Model (CM). The CM has been developed from linear productivity model and material balance equation. Its inputs are production/injection rates and bottomhole pressure data (if available). The CM has weight factor for each well pair which determines the degree of connectivity between that pair. These weight factors were used and correlated to the fault transmissibility in this paper. Also, the CM was modified to incorporate the leakage in the system. New term, called leakage factor, was added for each well in the equation. The model was examined through applying to several synthetic field data generated by CMG software. In synthetic fields, different faults with different throw and transmissibility were built and across the fault transmissibility was evaluated by the model. For creating leaking fault, upward leakage and flow along the fault were examined. Estimated zero leakage factor means no leakage and one means maximum leakage for the wells. The leakage factors not only identified where the leakage was happening, but also determined the amount of leakage by multiplying leakage factor to the net accumulation. In reservoirs with complex geology and several faults, commonly encountered in Trinidad, all geological and geophysical complexities might not be accurately known. Using alternative methods such as the CM can complement, validate or better determine fault properties such as leakage and transmissibility for proper application of EOR schemes.
The paper seeks to assess the technical and economic feasibility of implementing carbon dioxide enhanced oil recovery (CO 2 EOR) in Trinidad and Tobago from flue gas production whilst mitigating the effect of greenhouse gases via CO 2 sequestration. An existing power plant in Trinidad was selected as the CO2 source. As such, actual CO2 volumes and properties were found and used in this analysis. However, a hypothetical field was chosen as the appropriate sink, which can be analogous to a field in onshore Trinidad.A detailed reservoir model was built using the compositional fluid model CMG-GEM. Various scenarios were simulated to determine the optimum number of producers for primary production and the best location of the injectors for CO 2 EOR. The optimum number of producers for the reservoir during primary production was found. In addition, the most favorable location of the injector to avoid early breakthrough and increase oil recovery was also determined.Many key parameters were reported from this investigation. These included OIIP, forecasted production and primary recovery. After primary production, CO2 EOR was then implemented with the use of the reservoir and fluid models and the additional recovery is reported. Other Key CO2-EOR parameters such as CO2 utilization rate and total sequestered CO2 were also quantified.Though a hypothetical reservoir was used, all associated data were defined and once an actual reservoir is known, the same technically rigid methodology can be applied.The OIIP was found to be 6.74 MMSTB for the selected reservoir. Based on an economic net present value (NPV) assessment, the optimum number of production wells for field development was found to be 3. At the end of primary production from these three wells (with 2.375 in. tubing), a total of 1.83 MMSTB were produced. This corresponded to a primary recovery factor of 27.2% over 4 years and 2 months.For CO 2 EOR coupled with sequestration, these three wells were manipulated and used as 1 injector and 2 producers. CO 2 EOR led to another 1.07 MMSTB of recovery for a total of 2.9 MMSTB (43.04% Recovery) for the ten year life of the project. A total of 5427 MMSCF (287 000 tons) of CO 2 was sequestered in the reservoir (40.39% Storage) at an injection pressure of 1400 psi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.