Digital infrared thermal imaging is a non-invasive adjunctive diagnostic technique that allows an examiner to visualize and quantify changes in skin surface temperature. The asymmetry of temperature differences between the diseased and the contralateral healthy body parts can be automatically analyzed and has been studied in many areas of medical science. In this paper, we propose a method for intelligent automatic asymmetry detection based on a K-means analysis and a YCbCr color model. The implemented software successfully visualizes an asymmetric distribution of colors with respect to the patients' health status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.